思路就是求某种颜色对于答案的贡献,然后累加起来即可。
考虑颜色c对答案的贡献,即至少包含一个c颜色格子的矩阵的数目。现在的问题是我们如何不重复不遗漏的统计个数。先排个序(行号升序,列号升序,实际上也就是从左往右从上往下的考虑)。把每个合法的矩阵算在序最小的那个关键点头上,这样就可以保证不重复,不遗漏。那么我们再找包含第一个关键点的矩阵的时候,显然没有任何限制,只需要包含这个点就行了。找第二个关键点的矩阵的时候,不能包含第一个点……找第i个关键点决定的矩阵的时候,不能包含1..i-1这i-1个点。
暴力计数即可,代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long int LL;
const int MOD = 998244353;
const int MAX_N = 105;
const int INF = 0x3f3f3f3f;
int col[MAX_N][MAX_N];
int main()
{
//freopen("test.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin.sync_with_stdio(false);
int T;
cin >> T;
while (T--)
{
int n, m;
cin >> n >> m;
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++)
cin >> col[i][j];
LL ans = 0;
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++)
{
int c = col[i][j];
int l = 0, r = m + 1;
for (int k=i; k>=1; k--)
{
for (int t=j; t>=1; t--)
if (col[k][t] == c)
{
if (k == i && t == j)
continue;
l = max(l, t);
break;
}
for (int t=j; t<=m&&k<i; t++)
if (col[k][t] == c)
{
if (k == i && t == j)
continue;
r = min(r, t);
break;
}
ans += (j - l) * (r - j) * (n - i + 1LL);
}
}
LL cnt = n * (n - 1) * m * (m - 1) / 4 + n * m * (m + n) / 2;
printf("%.9f\n", ans * 1.0 / cnt);
}
return 0;
}