[建图思想] 2020上理校赛E Eight Digital Games

题面

link
  给定一个长为 n ( n ≤ 1 e 5 ) n (n ≤ 1e5) n(n1e5) 的只含数字1 - 8的字符串,每出现一个逆序对 ( a , b ) (a, b) (a,b) (其中 b < a b < a ba) 就会有 P a , b P_{a, b} Pa,b 的 cost, 比如字符串 85511 85511 85511 的 cost 为 2 × P 8 , 5 + 2 × P 8 , 1 + 4 × P 5 , 1 2 × P_{8, 5} + 2 × P_{8, 1} + 4 × P_{5, 1} 2×P8,5+2×P8,1+4×P5,1
  此外还有一个变换操作,可以花费 C a , b C_{a, b} Ca,b 将所有的 a a a 换成 b b b, b b b 换成 a a a,如花费 C 8 , 5 C_{8, 5} C8,5(或者 C 5 , 8 C_{5, 8} C5,8) 可以将字符串 85511 85511 85511 变成 58811 58811 58811。我们可以进行任意次的变换操作,最后要计算逆序对的花费,求总共最小的花费。
  输入为长度 n n n,数字字符串,以及 8 × 8 8 × 8 8×8 P P P 矩阵和 C C C 矩阵,其中 P P P 矩阵是下三角矩阵(因为正序对的花费自然为0), C C C 矩阵是对称矩阵。

分析

  其实要求逆序对的花费,就是求各种数对的花费,因为正序对的花费都是 0。
  由于变换操作是相同的全部数字一起变的,即一开始数字一样的位置,无论经过多少次变换,最后还是一样的;一开始不一样的数字,最后也肯定不一样的。那么字符串就可以最多分成 8 组, 第 i i i 组最开始是表示数字 i i i, 经过若干次变换之后,这一组可能会变成其他任何数字。
  
  要计算的花费分为变换的花费和变换后数对的花费。
  数对花费:若用 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示 第 i i i 组和第 j j j 组能组成的 ( i , j ) (i, j) (ij)数对的个数,则没有变换的数对花费就是 ∑ i = 1 8 ∑ j = 1 8 d p [ i ] [ j ] × P [ i ] [ j ] \sum_{i = 1}^8\sum_{j = 1}^8 dp[i][j] ×P[i][j] i=18j=18dp[i][j]×P[i][j], 若记第 i i i 组数最后变成 m a r k [ i ] mark[i] mark[i], 则花费就是 ∑ i = 1 8 ∑ j = 1 8 d p [ i ] [ j ] × P [ m a r k [ i ] ] [ m a r k [ j ] ] \sum_{i = 1}^8\sum_{j = 1}^8 dp[i][j] ×P[mark[i]][mark[j]] i=18j=18dp[i][j]×P[mark[i]][mark[j]]
  可以通过线性时间计算 d p [ i ] [ j ] dp[i][j] dp[i][j]

for(int i = 0; s[i]; i++)               //计算组对的个数
    {
        int tmp = s[i] - '0';
        for(int j = 1; j <= 8; j++)
            dp[j][tmp] += num[j];
        num[tmp]++;
    }

  变换花费:一开始各个组对应的序列就是 12345678 12345678 12345678, 此时的变换花费为0, 而最多有 8 ! 8! 8这么多序列可以变换,那该怎么计算到每个序列的最少花费呢?
  一开始我用的是递归的方式,即每个序列可以通过变换两组的数字变成另一个序列,但是这样的话每一个序列可以有 C 8 2 C_8^2 C82 种变换,那么 8 ! 8! 8! 种序列的开销太大了。比如从 12345678 12345678 12345678,变成 87654321 87654321 87654321,有很多种方式,通过递归找到最短的变换方式并不是好的选择。
  由此引入了建图的思想,将这个问题考虑成一张图,序列为点,其中相邻点(可以通过一次操作变换得到)之间的边即为变换的花费,那么我们要求的即是最初序列到其他序列的最小花费,即为单源最短路问题了。
  如果用Dijkstra 方法计算,边数为 8 ! × C 8 2 2 \frac{8!×C_8^2}{2} 28×C82, 点数即为 8 ! 8! 8!,而怎么将一个序列映射到点的标号呢?这里可以用生成排列的序号,如 12345678 12345678 12345678 0 0 0, 12345687 12345687 12345687 1 1 1, 87654321 87654321 87654321 8 ! − 1 8!-1 8!1

int GetIndex(int* a)                 //获取一个排列的序号,从0开始
{
    int res = 0;
    for(int i = 1; i < 8; i++)
    {
        int cnt = 0;
        for(int j = i + 1; j <= 8; j++)
            if(a[i] > a[j])
                cnt++;
        res += cnt * fac[8 - i];       //fac[i]表示阶乘
    }
    return res;
}

  综上,只需要预先计算序列之间的变换花费 ( O ( 8 ! × C 8 2 2 l g 8 ! ) ) O(\frac{8!×C_8^2}{2}lg8!)) O(28×C82lg8!)), 预处理组对数( O ( 8 n ) O(8n) O(8n)), 对每个序列计算数对花费( O ( 8 ! × 64 ) O(8!× 64) O(8!×64))。

代码

#include <bits/stdc++.h>

using namespace std;
typedef unsigned long long ll;
const int maxn = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;

int fac[10], n, dp[9][9], num[9];
ll P[9][9], C[9][9];
char s[maxn];

int GetIndex(int* a)                 //获取一个排列的序号,从0开始
{
    int res = 0;
    for(int i = 1; i < 8; i++)
    {
        int cnt = 0;
        for(int j = i + 1; j <= 8; j++)
            if(a[i] > a[j])
                cnt++;
        res += cnt * fac[8 - i];
    }
    return res;
}

struct node                             
{
    int a[9];
    ll w;
    bool operator<(const node& m) const         //使得优先队列可以小顶堆
    {
        return w > m.w;
    }
};
ll d[41000];
priority_queue<node> que;    

void Dijkstra()
{
    memset(d, INF, sizeof(d));
    d[0] = 0;                    //初始位置为序列12345678
    node u;
    u.w = 0;
    for(int i = 1; i <= 8; i++)
        u.a[i] = i;
    que.push(u);

    while(!que.empty())
    {
        node p = que.top(); que.pop();
        int k1 = GetIndex(p.a);
        if(d[k1] < p.w) continue;             //去掉已经被访问过的节点和被更新过的边长

        node tmp = p;
        for(int i = 1; i < 8; i++)                    //遍历与这个序列相邻的序列,进行更新
            for(int j = i + 1; j <= 8; j++)
            {
                swap(tmp.a[i], tmp.a[j]);
                int k2 = GetIndex(tmp.a);
                if(d[k2] > d[k1] + C[i][j])
                {
                    d[k2] = d[k1] + C[i][j];
                    tmp.w = d[k2];
                    que.push(tmp);
                }
                swap(tmp.a[i], tmp.a[j]);
            }
    }
}

int main()
{
    fac[1] = 1;                     //计算阶乘
    for(int i = 2; i <= 8; i++)
        fac[i] = fac[i-1] * i;

    scanf("%d %s", &n, s);    
    for(int i = 1; i <= 8; i++)
        for(int j = 1; j <= 8; j++)
            scanf("%lld", &P[i][j]);
    for(int i = 1; i <= 8; i++)
        for(int j = 1; j <= 8; j++)
            scanf("%lld", &C[i][j]);
    Dijkstra();                      //计算序列之间转换的花费

    for(int i = 0; s[i]; i++)               //计算组对的个数
    {
        int tmp = s[i] - '0';
        for(int j = 1; j <= 8; j++)
            dp[j][tmp] += num[j];
        num[tmp]++;
    }

    int mark[9] = {0, 1, 2, 3, 4, 5, 6, 7, 8};         //对每一个序列计算答案
    ll ans = LLONG_MAX;
    do
    {
        ll res = d[GetIndex(mark)];
        for(int i = 1; i <= 8; i++)
            for(int j = 1; j <= 8; j++)
                res += dp[i][j] * P[mark[i]][mark[j]];
        ans = min(res, ans);
    }while(next_permutation(mark + 1, mark + 8 + 1));

    printf("%lld\n", ans);
}

  虽然题目给的n 是 1e5, 不过要开到 1e6,奇奇怪怪

收获

  ① 建图的思想,长姿势了,瞬间将一个复杂的递归转成一个带log的线性做法。
  ②复习了离散数学中学的生成排列,以及C++ next_permutation的用法

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值