[dp专题]牛客的dp学习记录


   

树型dp

    过程:一般先算子树然后进行合并,在实现上与二叉树的后序遍历类似,先遍历子树,遍历完之后把子树的值合并给父亲。
   
   NC24953(树的最小支配集):一个点被盖,它自己和与它相邻的点都算被覆盖。给你一棵无向树,问你最少用多少个点可以覆盖掉所有其他的点?
   若是边覆盖的话,一条边要么被某个结点自己覆盖,要么被其儿子覆盖。但是现在是覆盖点,一个点既可以被儿子覆盖,也可以被自己覆盖,也可以被父亲覆盖,所以要定义三个状态了。
    d p [ i ] [ 0 ] dp[i][0] dp[i][0] 表示某个结点自身有覆盖,子树的最小点数, d p [ i ] [ 1 ] dp[i][1] dp[i][1] 表示某个结点自己没有覆盖,但是某个儿子覆盖, d p [ i ] [ 2 ] dp[i][2] dp[i][2] 表示某个结点自己没有覆盖,但是其父亲覆盖。
   易知 d p [ i ] [ 0 ] = 1 + ∑ m i n ( d p [ j ] [ 0 ] , d p [ j ] [ 1 ] , d p [ j ] [ 2 ] ) dp[i][0] = 1 + \sum min(dp[j][0], dp[j][1], dp[j][2]) dp[i][0]=1+min(dp[j][0],dp[j][1],dp[j][2]) ( j j j i i i 的儿子), d p [ i ] [ 2 ] = ∑ m i n ( d p [ j ] [ 0 ] , d p [ j ] [ 1 ] ) dp[i][2] = \sum min(dp[j][0], dp[j][1]) dp[i][2]=min(dp[j][0],dp[j][1]), d p [ i ] [ 1 ] dp[i][1] dp[i][1] 比较复杂一些,需要至少有一个儿子覆盖自身,则 d p [ i ] [ 1 ] = ∑ m i n ( d p [ j ] [ 0 ] , d p [ j ] [ 1 ] ) + i n c   i n c = m a x ( 0 , m i n   d p [ j ] [ 0 ] − d p [ j ] [ 1 ] ) dp[i][1] = \sum min(dp[j][0], dp[j][1]) + inc \ inc = max(0, min \ dp[j][0] - dp[j][1]) dp[i][1]=min(dp[j][0],dp[j][1])+inc inc=max(0,min dp[j][0]dp[j][1])

#include <bits/stdc++.h>
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1e4 + 10;
const int INF = 0x3f3f3f3f;
const ll mod = 998244353;

int n, m;

struct edge                     //链式前向星
{
    int to, next;
}e[maxn*2];

int head[maxn], num;         //head为0表示搜索到了尽头

void add_edge(int u, int v)
{
    e[++num].to = v;
    e[num].next = head[u];
    head[u] = num;
}

int dp[maxn][3];

void dfs(int x, int fa)
{
    int flag = 0, tmp = INF;
    dp[x][0] = 1;
    for(int i = head[x]; i; i = e[i].next)
    {
        int to = e[i].to;
        if(to == fa)  continue;
        dfs(to, x);
        dp[x][0] += min(dp[to][0], min(dp[to][1], dp[to][2]));
        dp[x][2] += min(dp[to][0], dp[to][1]);
        if(dp[to][0] <= dp[to][1])
        {
            dp[x][1] += dp[to][0];
            flag = 1;
        }
        else
        {
            dp[x][1] += dp[to][1];
            tmp = min(tmp, dp[to][0] - dp[to][1]);
        }
    }
    if(flag == 0)  dp[x][1] += tmp;
}

int main()
{
    scanf("%d", &n);
    for(int i = 1; i < n; i++)
    {
        int x, y;
        scanf("%d %d", &x, &y);
        add_edge(x, y);  add_edge(y, x);
    }
    dfs(1, 0);
    printf("%d\n", min(dp[1][0], dp[1][1]));
}

   
   NC24953(二分): 给定一棵 n n n 个结点的树,每条边有个边权,然后切去一些边,让根结点和除根结点外的叶子结点不连通,切去边的总值不能超过 m m m, 问所有的方案中,切去最大边最小是多少?
   可以知道最大边越大,越容易实现,所求的值是单调的,所以可以进行二分,进行树上的 dp;我的二分方法是让 L L L 一定不可行,让 R R R 一定可行,只要这两个值差距小于等于 1 1 1, 答案就是 R R R

#include <bits/stdc++.h>
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1010;
const int INF = 0x3f3f3f3f;
const ll mod = 998244353;

int n;

struct edge                     //链式前向星
{
    int to, next, w;
}e[maxn*2];

int head[maxn], num;         //head为0表示搜索到了尽头

void add_edge(int u, int v, int w)
{
    e[++num].to = v;
    e[num].w = w;
    e[num].next = head[u];
    head[u] = num;
}

int mx, m, cur, d[maxn];

bool dfs(int x, int fa)           //x的子树断掉所有叶子结点是否可行,若可行,最小值记录在d[x]中
{
    if(e[head[x]].next == 0 && fa > 0)        //若 x 不是根结点且为叶子结点
        return false;

    d[x] = 0;
    for(int i = head[x]; i; i = e[i].next)
    {
        //cout<<x<<" "<<e[x].w<<" "<<cur<<endl;
        if(e[i].to == fa)  continue;
        if(!dfs(e[i].to, x))
        {
            if(e[i].w > cur)  return false;
            d[x] += e[i].w;

        }
        else if(e[i].w > cur)  d[x] += d[e[i].to];
        else d[x] += min(d[e[i].to], e[i].w);
    }
    if(d[x] > m)  return false;
    return true;
}

int main()
{
    scanf("%d %d", &n, &m);
    for(int i = 1; i < n; i++)
    {
        int x, y, z;
        scanf("%d %d %d", &x, &y, &z);
        mx = max(mx, z);
        add_edge(x, y, z);  add_edge(y, x, z);
    }

    cur = mx;
    if(!dfs(1, 0))                          //判断右端点是否可行
    {
        printf("%d\n", -1);
        return 0;
    }
    int l = 1, r = mx;
    while(r - l > 1)                          //二分
    {
        cur = (l + r) / 2;
        if(dfs(1, 0))  r = cur;
        else l = cur;
    }
    printf("%d\n", r);
}

   

状压dp

    过程:一种直观而高效地表示复杂状态的手段

   
   NC20240(按行考虑):在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子。
   若是要单独考虑每一个国王的摆放,有一些困难(插头dp ?),所以可以按照行来考虑,以一个二进制数 x x x 表示一行,首先这一行不能有相邻的 1, 即 ( x & ( x + 1 ) ) ! = 0 (x \& (x+1)) != 0 (x&(x+1))!=0, 其次与上一行(记录状态为 y y y )也不能互相攻击,即 ( x & ( y + 1 ) ) ! = 0 (x \& (y+1)) != 0 (x&(y+1))!=0, ( x & ( y − 1 ) ) ! = 0 (x \& (y-1)) != 0 (x&(y1))!=0, ( x & y ) ! = 0 (x \& y) != 0 (x&y)!=0。所以我们可以得到转移方程: 第 i i i 行 摆了 j j j 个国王且状态为 k k k f [ i ] [ j ] [ k ] + = f [ i − 1 ] [ j − n u m [ k ] ] [ p ] f[i][j][k] += f[i-1][j - num[k]][p] f[i][j][k]+=f[i1][jnum[k]][p]

#include <bits/stdc++.h>
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1010;
const int INF = 0x3f3f3f3f;
const ll mod = 998244353;

int n, K;
ll dp[10][82][600], ans;

int getNum(int x)
{
    int cnt = 0;
    while(x)
    {
        cnt += x & 1;
        x >>= 1;
    }
    return cnt;
}

int main()
{
    scanf("%d %d", &n, &K);
    dp[0][0][0] = 1;

    for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j < (1 << n); j++)
        {
            if(j & (j<<1)) continue;
            int num = getNum(j);
            if(num > K) continue;
            for(int k = 0; k < (1 << n); k++)
            {
                if((k & (k<<1)) || (k & j) || (k & (j<<1)) || (k & (j>>1)))
                    continue;
                for(int h = 0; h + num <= K; h++)
                    dp[i][h+num][j] += dp[i-1][h][k];
            }
        }
    }


    for(int i = 0; i < (1 << n); i++)
        ans += dp[n][K][i];
    printf("%lld\n", ans);
}

   
   NC16544(压缩初始状态):题目很简单,给定一个无向图,求出长度大于2的简单环(顶点不重复出现)的数量,相应的取模。( n ≤ 20 n ≤ 20 n20)
   若是用搜索的话,当完全图时复杂度会到达 O ( n ! ) O(n!) O(n)。若是用状压 dp 的话,一维用01串表示去过的点的话,那必须还得记录这条路径的起点和终点,若是开成三维数组的话,内存较大,并且最后答案肯定还有去重,比较麻烦。其实01串不仅可以表示去过的点,还可以表示出路径的起始位置,我们不妨用最低为 1 的位表示路径的起始位置,并规定这条路径只能走到标号比起始位置大的点,这样的话我们更新只会将后面的 0 变成 1, 前面的 1 永远是 1(详细的转移方程见代码),而由于一个环可以顺时针也可以逆时针,所以最后答案要除以2。

#include <bits/stdc++.h>
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair<int, int> P;
const int maxn = (1<<20) + 10;
const int INF = 0x3f3f3f3f;
const ll mod = 998244353;

ll dp[maxn][20], ans[22], a[22];
int n, m, K, d[22][22];

int main()
{
    scanf("%d %d %d", &n, &m, &K);
    for(int i = 1; i <= m; i++)
    {
        int x, y;
        scanf("%d %d", &x, &y);
        d[x-1][y-1] = d[y-1][x-1] = 1;      //切记状压从第0位开始,所以点也是从0计数
    }

    for(int i = 0; i < n - 2; i++)         //以点 i 为起始点
        dp[1<<i][i] = 1;
    for(int i = 1; i < (1<<n); i++)
    {
        int s = 0;                           //s记录最低位1,即路径的起点
        for(;;s++)
            if(i & (1<<s))
                break;
        if(s >= n - 2)  continue;
        for(int j = s; j < n; j++)               //s前面不会有1
        {
            if(((1<<j) & i) == 0 || dp[i][j] == 0)  continue;  //找到要扩展出路径的点
            for(int k = s + 1; k < n; k++)                      //找到被扩展的点
            {
                if(((1<<k) & i) || d[j][k] == 0) continue;
                dp[i | (1<<k)][k] += dp[i][j];
                dp[i | (1<<k)][k] %= mod;
            }
            if(d[j][s])                               //如果可以形成一个环
            {
                int num = __builtin_popcount(i);         //统计1的个数
                if(num >= 3)
                    ans[num] += dp[i][j],  ans[num] %= mod;
            }
        }
    }
    for(int i = 3; i <= n; i++)
        a[i%K] = (a[i%K] + ans[i]) % mod;

    for(int i = 0; i < K; i++)
        printf("%lld\n", (a[i] * (mod + 1) / 2) % mod);
}

   

数位dp

    过程:按位考虑。
   NC15035:题意是说令人讨厌的数字定义成含有4或者38的数字,给定一个区间,问里面有多少个这样令人讨厌的数?
   首先可以将各个位置上的数字拆分, f [ i ] [ s t ] f[i][st] f[i][st]表示 从高往低数前 i − 1 i - 1 i1 位的状态确定为 st,给第 i i i 位到第 1 1 1 位填数字有多少种填法。0 表示既没有4也没有 38, 1 表示既没有4也没有38并且第 i − 1 i - 1 i1 位为3, 2 表示前面已经有 4 和 38。

#include <bits/stdc++.h>
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const ll mod = 998244353;

int f[10][3], a[10];

int dp(int pos, int st, int flag)
{
//flag 表示是否能直接返回值,也就是前pos - 1位和原数是否一样
    if(pos == 0)  return st == 2;
    if(flag && f[pos][st] != -1)  return f[pos][st];
    int x = flag? 9: a[pos];
    int ans = 0;
    for(int i = 0 ; i <= x; i++)
    {
        if(i == 4 || st == 2 || (st == 1 && i == 8))
            ans += dp(pos - 1, 2, flag || i < a[pos]);
        else if(i == 3)  ans += dp(pos - 1, 1, flag || i < a[pos]);
        else ans += dp(pos - 1, 0, flag || i < a[pos]);
    }
    if(flag)  f[pos][st] = ans;
    return ans;
}

int calc(int x)
{
    if(x <= 0)  return 0;
    memset(a, 0, sizeof(a));
    int pos = 0;
    while(x)
    {
        a[++pos] = x % 10;
        x /= 10;
    }
    return dp(pos, 0, 0);
}

int main()
{
    int n, m;
    memset(f, -1, sizeof(f));
    while(~scanf("%d %d", &n, &m))
    {
        if(n == 0 && m == 0) break;
        printf("%d\n", calc(m) - calc(n - 1));
    }
}


   
   NC20665:给定一个区间,问这个里面有多少数能被7整除且位数和为7。
   在数位dp的时候,比较好维护的是数位和(%7结果) 和前面的数 %7 的结果,维护这两个即可。

#include <bits/stdc++.h>
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int mod = 20020219;

ll l, r, f[30][7][7];
int n, a[25];

ll dp(int pos, int pre, int sum, int flag)
{
    if(pos == 0)  return (pre == 0 && sum == 0);
    if(flag && f[pos][pre][sum] != -1)  return f[pos][pre][sum];
    int maxi = flag? 9: a[pos], tmp = 10 * pre;
    ll ans = 0;
    for(int i = 0 ; i <= maxi; i++)
    {
        ans += dp(pos - 1, (tmp + i) % 7, (sum + i) % 7, flag || i < maxi);
    }
    if(flag)  f[pos][pre][sum] = ans;
    return ans;
}

ll calc(ll x)
{
    if(x < 0)  return 0;
    memset(a, 0, sizeof(a));
    int pos = 0;
    while(x)
    {
        a[++pos] = x % 10;
        x /= 10;
    }
    return dp(pos, 0, 0, 0);
}

int main()
{
    for(int i = 0; i < 25; i++)
        for(int j = 0; j < 7; j++)
            for(int k = 0; k < 7; k++)
                f[i][j][k] = -1;

    while(~scanf("%lld %lld", &l, &r))
    {
        if(r == 0 && l == 0) break;
        printf("%lld\n", calc(r) - calc(l - 1));
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值