8.4 前缀和

本文所有题目用暴力均会超时。考虑更简便算法。


基础算法

一维数组前缀和

洛谷P8218【深进1.例1】求区间和

题目描述

给定 n n n 个正整数组成的数列 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a1,a2,,an m m m 个区间 [ l i , r i ] [l_i,r_i] [li,ri],分别求这 m m m 个区间的区间和。对于所有测试数据, n , m ≤ 1 0 5 , a i ≤ 1 0 4 n,m\le10^5,a_i\le 10^4 n,m105,ai104

输入格式

第一行,为一个正整数 n n n

第二行,为 n n n 个正整数 a 1 , a 2 , ⋯   , a n a_1,a_2, \cdots ,a_n a1,a2,,an

第三行,为一个正整数 m m m

接下来 m m m 行,每行为两个正整数 l i , r i l_i,r_i li,ri ,满足 1 ≤ l i ≤ r i ≤ n 1\le l_i\le r_i\le n 1lirin

输出格式

m m m 行。

i i i 行为第 i i i 组答案的询问。

样例 #1

样例输入 #1

4
4 3 2 1
2
1 4
2 3

样例输出 #1

10
5

提示

样例解释:第 1 1 1 到第 4 4 4 个数加起来和为 10 10 10。第 2 2 2 个数到第 3 3 3 个数加起来和为 5 5 5

对于 50 % 50 \% 50% 的数据: n , m ≤ 1000 n,m\le 1000 n,m1000

对于 100 % 100 \% 100% 的数据: 1 ≤ n , m ≤ 1 0 5 1 \le n, m\le 10^5 1n,m105 1 ≤ a i ≤ 1 0 4 1 \le a_i\le 10^4 1ai104


思路
前缀和:
例 考虑数组 1 2 3 5 4,求数组中第3到第5个数字的和。
求3-5的和,可以理解为将1-5的和,减去1-2的和。
将3,5替换为p q,在数组中求第p-q个数的和,即(p-1)的前缀和减去(q-1-1)的前缀和。
注意被减去的区间内不包括第q个数字本身,需要再-1。

代码实现

//一维前缀和 
#include<iostream>
const int N=100005;
using namespace std;

int n,q,l,r;//数组大小 询问次数 询问左区间 询问右区间 
int arr[N];//原数组 
int sum[N];//计算前缀和数组 

int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>arr[i]; 
		
	}
	sum[0]=0;//第0位的前缀和的上一位为空,防止越界,在数组前加一个0 
	for(int i=1;i<=n;i++)
	{
		sum[i]+=sum[i-1]+arr[i];//第i位的前缀和=上一位的前缀和+本位数字 
	}
	cin>>q;
	for(int i=0;i<q;i++)
	{
		cin>>l>>r;
		cout<<sum[r]-sum[l-1]<<endl;//注意l-1,否则区间内不包括l 
	}
//	2 1 3 6 4
//	1 2
//	1 3
//	2 4
	
}

二维数组前缀和

最大加权矩形

题目描述

为了更好的备战 NOIP2013,电脑组的几个女孩子 LYQ,ZSC,ZHQ 认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听说她们都是电脑组的高手,校长没有马上答应他们,而是先给她们出了一道数学题,并且告诉她们:你们能获得的运动场地的面积就是你们能找到的这个最大的数字。

校长先给他们一个 n × n n\times n n×n 矩阵。要求矩阵中最大加权矩形,即矩阵的每一个元素都有一权值,权值定义在整数集上。从中找一矩形,矩形大小无限制,是其中包含的所有元素的和最大 。矩阵的每个元素属于 [ − 127 , 127 ] [-127,127] [127,127] ,例如

 0 –2 –7  0 
 9  2 –6  2
-4  1 –4  1 
-1  8  0 –2

在左下角:

9  2
-4  1
-1  8

和为 15 15 15

几个女孩子有点犯难了,于是就找到了电脑组精打细算的 HZH,TZY 小朋友帮忙计算,但是遗憾的是他们的答案都不一样,涉及土地的事情我们可不能含糊,你能帮忙计算出校长所给的矩形中加权和最大的矩形吗?

输入格式

第一行: n n n,接下来是 n n n n n n 列的矩阵。

输出格式

最大矩形(子矩阵)的和。

样例 #1

样例输入 #1

4
0 -2 -7 0
 9 2 -6 2
-4 1 -4  1 
-1 8  0 -2

样例输出 #1

15

提示

1 ≤ n ≤ 120 1 \leq n\le 120 1n120


思路
求sum[x][y]:
xy
如图,求sum[x][y],即求黄色矩阵区间和。
黄色=两个橙色-橙色重叠部分+绿色,用代码表示:
sum[x][y]=sum[x][y-1]+sum[x-1][y]-sum[x-1][y-1]+arr[x][y]
注:arr为原数组。

下一步,求( x 1 x_1 x1, y 1 y_1 y1)到( x 2 x_2 x2, y 2 y_2 y2)的区间和:
求二维数组任意两个区间的前缀和
如图,求( x 1 x_1 x1, y 1 y_1 y1)到( x 2 x_2 x2, y 2 y_2 y2)的区间和,即求绿色矩阵区间和。
绿色=黄色-两个橙色+橙色重叠的部分,用代码表示:
sum[ x 2 x_2 x2][ y 2 y_2 y2] - sum[ x 1 x_1 x1-1][ y 2 y_2 y2] - sum[ x 2 x_2 x2][ y 1 y_1 y1-1] + sum[ x 1 x_1 x1-1][ y 1 y_1 y1-1]
注:不要减去区间内包含的行/列。

代码实现

//二维前缀和 
#include<iostream>
const int N=120;
using namespace std;

int main()
{
	int sum[N][N]; 
	int n; 
	cin>>n; 
	
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			cin>>sum[i][j];
			sum[i][j]+=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1];
		}
	}
	
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			for(int cnt1=i;cnt1<=n;cnt1++)
			{
				for(int cnt2=j;cnt2<=n;cnt2++)
				{
					int quest=sum[cnt1][cnt2]-sum[i-1][cnt2]-sum[cnt1][j-1]+sum[i-1][j-1];
					//查找sum[i][j]右下侧的所有前缀和 
				if(ans<quest)
				{
					ans=quest;//找最大值 
				}
				}
			}
		}
	}
	cout<<ans;
	
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值