本文所有题目用暴力均会超时。考虑更简便算法。
基础算法
一维数组前缀和
洛谷P8218【深进1.例1】求区间和
题目描述
给定 n n n 个正整数组成的数列 a 1 , a 2 , ⋯ , a n a_1, a_2, \cdots, a_n a1,a2,⋯,an 和 m m m 个区间 [ l i , r i ] [l_i,r_i] [li,ri],分别求这 m m m 个区间的区间和。对于所有测试数据, n , m ≤ 1 0 5 , a i ≤ 1 0 4 n,m\le10^5,a_i\le 10^4 n,m≤105,ai≤104
输入格式
第一行,为一个正整数 n n n 。
第二行,为 n n n 个正整数 a 1 , a 2 , ⋯ , a n a_1,a_2, \cdots ,a_n a1,a2,⋯,an
第三行,为一个正整数 m m m 。
接下来 m m m 行,每行为两个正整数 l i , r i l_i,r_i li,ri ,满足 1 ≤ l i ≤ r i ≤ n 1\le l_i\le r_i\le n 1≤li≤ri≤n
输出格式
共 m m m 行。
第 i i i 行为第 i i i 组答案的询问。
样例 #1
样例输入 #1
4
4 3 2 1
2
1 4
2 3
样例输出 #1
10
5
提示
样例解释:第 1 1 1 到第 4 4 4 个数加起来和为 10 10 10。第 2 2 2 个数到第 3 3 3 个数加起来和为 5 5 5。
对于 50 % 50 \% 50% 的数据: n , m ≤ 1000 n,m\le 1000 n,m≤1000;
对于 100 % 100 \% 100% 的数据: 1 ≤ n , m ≤ 1 0 5 1 \le n, m\le 10^5 1≤n,m≤105, 1 ≤ a i ≤ 1 0 4 1 \le a_i\le 10^4 1≤ai≤104
思路
前缀和:
例 考虑数组 1 2 3 5 4,求数组中第3到第5个数字的和。
求3-5的和,可以理解为将1-5的和,减去1-2的和。
将3,5替换为p q,在数组中求第p-q个数的和,即(p-1)的前缀和减去(q-1-1)的前缀和。
注意被减去的区间内不包括第q个数字本身,需要再-1。
代码实现
//一维前缀和
#include<iostream>
const int N=100005;
using namespace std;
int n,q,l,r;//数组大小 询问次数 询问左区间 询问右区间
int arr[N];//原数组
int sum[N];//计算前缀和数组
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>arr[i];
}
sum[0]=0;//第0位的前缀和的上一位为空,防止越界,在数组前加一个0
for(int i=1;i<=n;i++)
{
sum[i]+=sum[i-1]+arr[i];//第i位的前缀和=上一位的前缀和+本位数字
}
cin>>q;
for(int i=0;i<q;i++)
{
cin>>l>>r;
cout<<sum[r]-sum[l-1]<<endl;//注意l-1,否则区间内不包括l
}
// 2 1 3 6 4
// 1 2
// 1 3
// 2 4
}
二维数组前缀和
最大加权矩形
题目描述
为了更好的备战 NOIP2013,电脑组的几个女孩子 LYQ,ZSC,ZHQ 认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听说她们都是电脑组的高手,校长没有马上答应他们,而是先给她们出了一道数学题,并且告诉她们:你们能获得的运动场地的面积就是你们能找到的这个最大的数字。
校长先给他们一个 n × n n\times n n×n 矩阵。要求矩阵中最大加权矩形,即矩阵的每一个元素都有一权值,权值定义在整数集上。从中找一矩形,矩形大小无限制,是其中包含的所有元素的和最大 。矩阵的每个元素属于 [ − 127 , 127 ] [-127,127] [−127,127] ,例如
0 –2 –7 0
9 2 –6 2
-4 1 –4 1
-1 8 0 –2
在左下角:
9 2
-4 1
-1 8
和为 15 15 15。
几个女孩子有点犯难了,于是就找到了电脑组精打细算的 HZH,TZY 小朋友帮忙计算,但是遗憾的是他们的答案都不一样,涉及土地的事情我们可不能含糊,你能帮忙计算出校长所给的矩形中加权和最大的矩形吗?
输入格式
第一行: n n n,接下来是 n n n 行 n n n 列的矩阵。
输出格式
最大矩形(子矩阵)的和。
样例 #1
样例输入 #1
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
样例输出 #1
15
提示
1 ≤ n ≤ 120 1 \leq n\le 120 1≤n≤120
思路
求sum[x][y]:
如图,求sum[x][y],即求黄色矩阵区间和。
黄色=两个橙色-橙色重叠部分+绿色,用代码表示:
sum[x][y]=sum[x][y-1]+sum[x-1][y]-sum[x-1][y-1]+arr[x][y]
注:arr为原数组。
下一步,求(
x
1
x_1
x1,
y
1
y_1
y1)到(
x
2
x_2
x2,
y
2
y_2
y2)的区间和:
如图,求(
x
1
x_1
x1,
y
1
y_1
y1)到(
x
2
x_2
x2,
y
2
y_2
y2)的区间和,即求绿色矩阵区间和。
绿色=黄色-两个橙色+橙色重叠的部分,用代码表示:
sum[
x
2
x_2
x2][
y
2
y_2
y2] - sum[
x
1
x_1
x1-1][
y
2
y_2
y2] - sum[
x
2
x_2
x2][
y
1
y_1
y1-1] + sum[
x
1
x_1
x1-1][
y
1
y_1
y1-1]
注:不要减去区间内包含的行/列。
代码实现‘
//二维前缀和
#include<iostream>
const int N=120;
using namespace std;
int main()
{
int sum[N][N];
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin>>sum[i][j];
sum[i][j]+=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1];
}
}
int ans=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int cnt1=i;cnt1<=n;cnt1++)
{
for(int cnt2=j;cnt2<=n;cnt2++)
{
int quest=sum[cnt1][cnt2]-sum[i-1][cnt2]-sum[cnt1][j-1]+sum[i-1][j-1];
//查找sum[i][j]右下侧的所有前缀和
if(ans<quest)
{
ans=quest;//找最大值
}
}
}
}
}
cout<<ans;
}