8.8 排列与组合

排列问题

普通排列

定义:
从n个数字中,选择m个进行排列,称为n个元素中取出m个元素的一个排列.
排列的方案数记为 A n m A^m_n Anm

计算公式:
A n m A^m_n Anm = n ! / ( n − m ) ! n! / (n-m)! n!/(nm)!

特殊:
当 n = m,此时为全排列。且 A n m A^m_n Anm = n ! n! n!
当 m > n,排列数为0。

循环全排列

定义:
循环排列(circular permutation)亦称圆排列、环排列等。是排列的一种,指m个数中选n个个不同的元素排列成一个环形,既无头也无尾。

计算公式:
A n m A^m_n Anm / m m m = n ! / m ( n − m ) ! n! / m(n - m)! n!/m(nm)!

多重全排列

定义
多重全排列是指求 r 1 r_1 r1 a a a r 2 r_2 r2 b b b,…, r t r_t rt t t t的排列数,设 r 1 + r 2 + … + r t = n r1+r2+…+rt=n r1+r2++rt=n,此排列数称为多重全排列,表示为 P ( n : r 1 , r 2 , … r t ) P(n:r_1,r_2,…r_t) P(n:r1,r2,rt)

计算公式:
P ( n : r 1 , r 2 , … r t ) = n ! / ( r 1 ! r 2 ! . . . r t ! ) P(n:r1,r2,…rt) = n!/ (r_1! r_2! ... r_t!) P(n:r1,r2,rt)=n/(r1!r2!...rt!)

例题:
有a,b,c三种旗子各4面,一共12面,将12面旗子排成一列,求一共有多少种排列方案。

先将旗子当成不同的12面旗子,此时根据全排列公式得到方案数 n! = 12!
每种旗子有4面,即每种有4!次重复。三种就有 ( 4 ! ) 3 (4!)^3 (4!)3次重复。
再根据多重全排列公式得到方案数: P ( 12 : 4 , 4 , 4 ) = 12 ! / ( 4 ! ) 3 P(12:4,4,4) = 12!/ (4!)^3 P(12:444)=12/(4!)3

错排

定义:
n个有序的元素应有n!个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排。n个元素的错排数记为 D(n)。

计算公式:
D ( n ) = ( n − 1 ) ∗ [ D ( n − 1 ) + D ( n − 2 ) ] D(n) = (n-1) * [D(n-1) + D(n-2)] D(n)=(n1)[D(n1)+D(n2)]
这是一个递归关系式。


组合问题

普通组合

定义:
从n个元素中,任取m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合。方案数记作 C n m 。 C^m_n。 Cnm

计算公式:
C n m = n ! / m ! ( n − m ) ! C^m_n = n! / m! (n-m)! Cnm=n!/m!(nm)!
本质与普通排列问题相同。

多重组合

即多重全排列。


组合数学的常用定理

加法&乘法原理

加法原理:
做一件事,只需要1步就可以完成。完成它有n种方式,第1种有 m 1 m_1 m1个方式,第2种有 m 2 m_2 m2个方式,…,那么完成这件事有 m 1 + m 2 + . . . + m n m_1+m_2+...+m_n m1+m2+...+mn种方式。
一步可以完成,就是加法。

乘法原理:
做一件事,完成它需要n个步骤,第1步有 m 1 m_1 m1种不同的方法,第2步有 m 2 m_2 m2种不同的方法,……,第n步有 m n m_n mn种不同的方法。
那么完成这件事共有 N = m 1 × m 2 × … × m n N=m_1×m_2×…×mn N=m1×m2××mn 种不同的方法。
需要分步骤完成,就是乘法。

抽屉原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这就是“抽屉原理”。
抽屉原理的一般表述:有n+1个元素放到n个集合,其中必有一个集合里至少有2个元素。
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

容斥原理

在计数时,必须注意没有重复,没有遗漏。如何防止重叠部分被计算?
先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这就是容斥原理。

两个集合的容斥公式:A∪B =|A∪B| = |A|+|B| - |A∩B | (∩:重合的部分)
三个集合的容斥公式:|A∪B∪C| = |A|+|B|+|C| - |A∩B| - |B∩C| - |C∩A| + |A∩B∩C|

极端原理

解决数学问题时,经常要考虑“假如一个都没有”、“假如每一个都有”…
如果是最特殊(如最大、最小、最长、最短等)的极端情况,在这种极端的状态下,往往能使问题的关键暴露出来,帮助我们找到解题的途径。这种思想,在数学中称为极端原理。
极端原理也是组合数学的一个重要思想。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值