- 博客(4)
- 收藏
- 关注
原创 最短加法链和盒子里的气球问题的解决办法
经过证明,这种方式确实是计算最少需要的 6 次乘法。在这个计算过程中,幂序列中各次组成了正整数的一个加法链,如对于整数 23,3、5、10、20、23 就组成了一个加法链。给定一个正整数和一个实数,我们面临着如何用最少的乘法次数计算出这个正整数的问题。
2024-11-06 16:08:08 163
原创 印刷电路板布线问题的多种解法
方法优点缺点时间复杂度空间复杂度广度优先搜索(BFS)能够找到最短路径,思路直观。在大规模问题上可能效率较低。O(mn)O(mn)动态规划适用于求解具有最优子结构性质的问题。需要额外的空间存储中间结果。O(mn)O(mn)A * 算法结合了贪心算法和 Dijkstra 算法的优点,通常可以更快地找到目标节点。需要定义合适的预估代价函数,否则可能影响算法的性能。取决于优先队列中的节点数量,通常接近O(mn)。O(mn)
2024-10-24 14:11:46 724
原创 图的着色问题与最大团问题之间的关系,并利用该关系改进最大团问题上界
给定一个无向图 G=(V,E)G = (V, E)G=(V,E),其中 V 是顶点集合,E是边集合,以及一个正整数 m(表示颜色的数量),图着色问题的目标是判断是否可以将图的每个顶点着上 m 种颜色之一,使得相邻的两个顶点具有不同的颜色。给定一个无向图 G=(V,E),其中 V 是顶点集合,E 是边集合,最大团问题的目标是寻找图中最大的团(完全子图)。
2024-10-18 10:44:04 622
原创 深度剖析:DAG、Dijkstra 与 Bellmen - Ford 算法的原理、异同及应用
DAG(有向无环图)、Dijkstra算法和Bellman-Ford算法都是在图论中的重要算法。本文将简单介绍三者原理、彼此异同,以及各自的应用场景。
2024-10-12 16:49:06 925
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人