动态规划——线性DP(部分)

 

线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。

线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。

因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。(看的其他博主的概述)

 

我们先从最基础最基础的题来了解线性dp

 

 思路:

分析dp问题无非就两步:

step1:状态表示(难点)

step2:状态计算(也叫状态转移方程) 

---------------------------------------------------------------------------------------------------------------------------------

就此题我们也可以按照这个步骤来分析    

 我们可以将题目看成一个二维数组:如图(略显粗糙)

 根据题干我们可以先把你要求到(i,j)这个点的最大值的左上和右上的最大值求出来再加这个终点的值

那么集合划分就是两部分:左上和右上(如图)

!!!注意:f[i-1][j-1]+a[i][j] 

f[i-1][j]+a[i][j];

图中忘记加a[i][j];

所以f[i][j]=max(f[i-1][j-1]+a[i][j],f[i-1][j]+a[i][j]);

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=510,INf=1e9;
int f[N][N];
int a[N][N];
int n;
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) 
       for(int j=1;j<=i;j++) 
          cin>>a[i][j];
       
       
    for (int i = 0; i <= n; i ++ )
        for (int j = 0; j <= i + 1; j ++ )
            f[i][j] = -INf;

    f[1][1]=a[1][1];
    for (int i = 2; i <= n; i ++ )
        for (int j = 1; j <= i; j ++ )
            f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);
      
    int res = -INf;
    for (int i = 1; i <= n; i ++ ) res = max(res, f[n][i]);

    printf("%d\n", res);
    
    return 0;
       
      
}

二.最长公共子序列

eg:

思路:

其实这道题的思路和上面的很像。根据前面的步骤一步一步分析。

step1:状态表示,这里我们用二维来表示 f[i][j] :a[i],b[j]的公共子序列的全部集合;

step2:集合划分 根据a[i]和b[j]选没选来划分 分成四个部分

00:都不选

01:选择了b[j];

10:选择了a[i];

11:都选择 

 

代码

#include<bits/stdc++.h>
using namespace std;
const int N=1010;
char a[N],b[N];
int f[N][N];
int n,m;
int main()
{
    cin>>n>>m;
    scanf("%s%s",a+1,b+1);
    for(int i=1;i<=n;i++)
       for(int j=1;j<=m;j++)
       {
           f[i][j]=max(f[i][j-1],f[i-1][j]);
           if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
       }
    cout<<f[n][m]<<endl;
    return 0;
    
}

为什么代码实现只有三种情况呢?

因为10和01两种情况里包括了00出现的所有情况可以不写(集合划分可以重复但是不能漏掉元素,但是如果求数量的话集合划分就不可以有重复)

三. 最长上升子序列

(动态规划) O(n2)

状态表示:f[i]表示从第一个数字开始算,以w[i]结尾的最大的上升序列。(以w[i]结尾的所有上升序列中属性为最大值的那一个)

状态计算(集合划分):j∈(0,1,2,..,i-1), 在a[i] > a[j]时,
f[i] = max(f[i], f[j] + 1)。
有一个边界,若前面没有比i小的,f[i]为1(自己为结尾)。

最后在找f[i]的最大值。

代码

#include <iostream>

using namespace std;

const int N = 1010;

int n;
int a[N], f[N];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) cin >> a[i];

    int res = 1;    
    for (int i = 0; i < n; i++) {
        f[i] = 1;    // 设f[i]默认为1,找不到前面数字小于自己的时候就为1
        for (int j = 0; j < i; j++) {
            if (a[i] > a[j]) f[i] = max(f[i], f[j] + 1);    // 前一个小于自己的数结尾的最大上升子序列加上自己,即+1
        }
        res= max(res, f[i]);
    }

    cout << res << endl;
    return 0;
}

 优化

(动态规划 + 二分) O(nlogn)

#include <iostream>

using namespace std;

const int N = 1010;
int n, cnt;
int a[N], f[N];

int main() {
    cin >> n;
    for (int i = 0 ; i < n; i++) cin >> a[i];

    f[cnt++] = a[0];
    for (int i = 1; i < n; i++) {
        if (a[i] > f[cnt-1]) f[cnt++] = a[i];
        else {
            int l = 0, r = cnt - 1;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (f[mid] >= a[i]) r = mid;
                else l = mid + 1;
            }
            f[r] = a[i];
        }
    }
    cout << cnt << endl;
    return 0;
}

(此文章仅仅包括我学习整理部分 不是全部线性dp问题 以后会写完整的内容)

对于这部分推荐一篇博客

https://blog.csdn.net/u011815404/article/details/81870275?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168951204916800215058965%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=168951204916800215058965&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-81870275-null-null.142^v88^insert_down1,239^v2^insert_chatgpt&utm_term=%E7%BA%BF%E6%80%A7dp&spm=1018.2226.3001.4187

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值