一、购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
特别提醒:不许携带计算器入场,也不能打开手机。
答案:5200
思路:把购物单内容复制粘贴到txt里,然后替换掉****和价字,稍微处理一下折扣,导入excel,用公式就可以算出来了。
二、等差素数列
标题:等差素数列
2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
答案:210
思路:先用素数筛筛出素数,然后枚举公差和起始素数
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define MAX 100000
int su[MAX],cnt;
bool isprime[MAX];
void prime()
{
memset(isprime,1,sizeof(isprime));
isprime[0]=isprime[1]=0;
cnt=1;
for(int i=2;i<MAX;i++)
{
if(isprime[i])
su[cnt++]=i;
for(int j=1;j<cnt&&su[j]*i<MAX;j++)
isprime[su[j]*i]=0;
}
}
int main()
{
prime();
for(int i=1;i*9<MAX;i++)
{
for(int j=1;j<cnt;j++)
{
int flag=1,temp=su[j];
for(int k=1;k<10;k++)
{
if(temp+i>=MAX||!isprime[temp+i])
{
flag=0;
break;
}
else
temp+=i;
}
if(flag)
{
printf("%d\n",i);
return 0;
}
}
}
return 0;
}
三、承压计算
标题:承压计算
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
答案:72665192664
思路:第i层有i块金属块,所以可以用num[i-1][j](j是0~i-1)来记录。因为每块金属块的重量都平均地落在下方两个金属块上,所以每一层的第一块重量为num[i][0]+num[i-1][0]/2,最后一块重量为num[i][i]+num[i-1][i-1]/2,中间的重量为num[i][j]+(num[i-1][j-1]+num[i-1][j])/2。这样就可以求出最小和最大重量,根据题目给的最小示数,然后按照比例就可以算出最大示数了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
int main()
{
FILE* fp=fopen("aaa.txt","r");
int i,j;
double num[30][30]={0};
for(i=0;i<29;i++)
{
for(j=0;j<=i;j++)
fscanf(fp,"%lf",&num[i][j]);
}
fclose(fp);
for(i=1;i<30;i++)
{
num[i][0]+=num[i-1][0]/2;
for(j=1;j<i;j++)
num[i][j]+=(num[i-1][j-1]+num[i-1][j])/2;
num[i][i]+=num[i-1][i-1]/2;
}
int min=0,max=0;
for(i=0;i<30;i++)
{
if(num[29][i]>num[29][max])
max=i;
if(num[29][i]<num[29][min])
min=i;
}
printf("%lf\n",num[29][max]*2086458231/num[29][min]);
return 0;
}
四、方格分割
标题:方格分割
6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。
答案:509
思路:看了网上大牛们的思路,这题不是看格子而是看边,从正中间(3,3)的点出发,向上下左右四个方向走,每走一步不仅要标记走的这一路线还要标记与它中心对称的路线,这样就可以把方格切成完全相同的两部分。最后结果还要除4,因为旋转对称属于同一种分割法。
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define N 6
int dir[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int vis[10][10];
int ans=0;
void dfs(int x,int y)
{
if(x==0||x==N||y==0||y==N)
{
ans++;
return;
}
for(int i=0;i<4;i++)
{
int dx=x+dir[i][0];
int dy=y+dir[i][1];
if(dx>=0&&dx<=N&&dy>=0&&dy<=N&&!vis[dx][dy])
{
vis[dx][dy]=1;
vis[N-dx][N-dy]=1;
dfs(dx,dy);
vis[dx][dy]=0;
vis[N-dx][N-dy]=0;
}
}
}
int main()
{
vis[N/2][N/2]=1;
dfs(N/2,N/2);
cout<<ans/4<<endl;
return 0;
}
五、取数位
标题:取数位
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
// 求x用10进制表示时的数位长度
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return _____________________; //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
答案:f(x/10,k)
思路:就是一个简单的递归而已。
六、最大公共子串
标题:最大公共子串
最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。
比如:“abcdkkk” 和 “baabcdadabc”,
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = __________________________; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。
答案:a[i-1][j-1]+1
思路:看题目就知道是个板子题了,知道这个算法的应该一下就能填出来。不过当时比赛的时候我完全不知道这是啥,也是靠理解推出来的。a[i][j]表示s1串前i个字符和s2串前j个字符都各自包含最后一个字符的最大公共子串长度,动态规划问题。
七、日期问题
标题:日期问题
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输出
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
样例输入
02/03/04
样例输出
2002-03-04
2004-02-03
2004-03-02
代码:
#include <algorithm>
#include <string.h>
#include <iostream>
#include <stdio.h>
#include <string>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
int md[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
struct date
{
int year;
int month;
int day;
date(int y,int m,int d)
{
year = y;
month = m;
day = d;
}
bool operator < (date other)const{
if(year == other.year)
{
if(month == other.month)
return day<other.day;
return month<other.month;
}
return year<other.year;
}
bool vial(){ //判断日期是否非法
if(year < 1960 || year > 2059) return false;
if(month <= 0 || month > 12) return false;
if(year % 400 == 0 || year % 100 != 0 && year % 4 == 0){
//闰年
if(month == 2){
return day >= 1 && day <= 29;
}
return day >= 1 && day <= md[month];
}else{
return day >= 1 && day <= md[month];
}
}
void print()const{
printf("%d-%02d-%02d\n",year,month,day);
}
};
set<date> ss; //利用set容器来去重排序
void insert(int a,int b,int c)
{
date obj(a,b,c);
if(obj.vial()) ss.insert(obj);
}
int main()
{
int a,b,c;
scanf("%d/%d/%d",&a,&b,&c);
//年月日
insert(1900+a,b,c);
insert(2000+a,b,c);
//月日年
insert(1900+c,a,b);
insert(2000+c,a,b);
//日月年
insert(1900+c,b,a);
insert(2000+c,b,a);
set<date>::iterator it = ss.begin();
for(; it != ss.end() ; it ++)
{
it->print();
}
return 0;
}
八、包子凑数
标题:包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
思路:以第一组样例为例,4和5凑得到,那么4+4、4+5也凑得到,4+4+4、4+4+5、4+5+4、4+5+5也凑得到,同理以此类推,就可以得出所有凑得到的数量。num[i]表示数量i能不能凑到,1为凑到,0为凑不到。记Ai中最小的数量为minn,如果找到连续minn个可凑得到的数量,那么说明后面的数量都可以凑得到,如果计到的凑不到数目大于某一个很大的数,就认为是INF。其实我觉得自己的想法是有一点问题的,但是代码提交了之后通过了所有测试数据,可以说是有很水了……
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
int num[1000000];
int main()
{
int n,a[100],i,j,minn=100,cnt1,cnt2,flag;
cin>>n;
memset(num,0,sizeof(num));
for(i=0;i<n;i++)
{
cin>>a[i];
num[a[i]]=1;
if(a[i]<minn)
minn=a[i];
}
cnt1=0;
cnt2=0;
flag=0;
for(i=1;i<1000000;i++)
{
if(num[i])
{
for(j=0;j<n;j++)
num[i+a[j]]=1;
}
if(!num[i])
cnt1++;
if(num[i])
{
flag=1;
cnt2++;
}
if(flag&&!num[i])
{
flag=0;
cnt2=0;
}
if(cnt2==minn)
{
cout<<cnt1<<endl;
break;
}
if(cnt1>100000)
{
cout<<"INF"<<endl;
break;
}
}
return 0;
}
九、分巧克力
标题: 分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
思路:枚举切出的正方形巧克力的边长,所有巧克力的长和宽中的最大值即为枚举的最大值。如果直接线性枚举,复杂度O(n)在官网提交会超时,所以这里使用二分法。这里需要注意的是,二分完之后得出的结果不一定就是最终答案(具体例子可以看评论区),所以需要再做一次检验。
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
int n,k;
int h[100005],w[100005];
bool check(int m)
{
int sum=0;
for(int i=0;i<n;i++)
{
sum+=(h[i]/m)*(w[i]/m);
if(sum>=k)
return true;
}
return false;
}
int main()
{
cin>>n>>k;
int l=1,r=0;
for(int i=0;i<n;i++)
{
cin>>h[i]>>w[i];
if(h[i]>r)
r=h[i];
if(w[i]>r)
r=w[i];
}
while(l<=r)
{
int m=(l+r)/2;
if(check(m))
l=m+1;
else
r=m-1;
}
while(l)//检验是否正确
{
if(check(l))
break;
l--;
}
cout<<l<<endl;
return 0;
}
十、k倍区间
标题: k倍区间
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。
例如,
输入:
5 2
1
2
3
4
5
程序应该输出:
6
思路:前缀和,用sum[i]表示前i项和,那么区间[l,r]的和就是sum[r]-sum[l-1],因为要是k的倍数,所以(sum[r]-sum[l-1])%k0,整理一下就是sum[r]%ksum[l-1]%k,所以统计让这个式子成立的项就好了。用v[i]来记录i(i是某个前n项和取模k之后的数据)出现的次数,先把前缀和搜索一遍,统计出的是区间[l,r](l<r)的k倍区间,最后再加一次v[0],加上的是区间[l,r](l=r)也就是一个数自身的区间。
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
int v[100005]={0};
long long num[100005];
int k,n;
long long ans=0;
int main()
{
cin>>n>>k;
int i;
for(i=0;i<n;i++)
cin>>num[i];
num[0]%=k;
for(i=1;i<n;i++)
num[i]=(num[i]+num[i-1])%k;
for(i=0;i<n;i++)
{
ans+=v[num[i]];
v[num[i]]++;
}
ans+=v[0];
cout<<ans<<endl;
return 0;
}