python实现牛顿法求二次根、三次根

公式:
在这里插入图片描述

# 牛顿法求三次根
def sqrt(n):
    k = n
    while abs(k*k-n)>1e-6:
        k = k - (k*k-n)/(2*k)
    print(k)

def cube_root(n):
    k = n
    while abs(k*k*k-n)>1e-6:
        k = k - (k*k*k-n)/(3*k*k)
    print(k)
sqrt(2)
cube_root(8)

在这里插入图片描述

<think>好的,我现在需要解决用户关于三次正则化牛顿法实现方法、代码示例和算法细节的问题。首先,我得回忆一下三次正则化牛顿法的基本概念和原理。传统牛顿法使用二次模型来逼近目标函数,而三次正则化法则在模型中加入了一个三次项的正则化项,这样可以改善收敛性,尤其是在处理非凸问题时可能更有效。 用户提供的引用中有提到牛顿法的缺陷,特别是步长α_k的处理。引用[3]指出经典牛顿法中步长固定为1可能导致问题,所以三次正则化可能通过调整步长或引入正则化项来改进。另外,引用[2]提到坐标下降法的快速路径解,但这里可能需要的是牛顿法的变种,因此需要关注正则化项的引入方式。 接下来,我需要确定三次正则化牛顿法的具体算法步骤。通常,这类方法会在每迭代中解一个子问题,例如最小化一个三次正则化的模型。这个模型可能形如: $$m_k(d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d + \frac{\sigma_k}{3} \|d\|^3$$ 其中,σ_k是正则化参数,控制正则化项的权重。迭代过程中需要选择合适的σ_k,并解d使得这个模型最小化。这涉及到如何选择σ_k和如何高效解子问题。 关于实现步骤,可能的流程是: 1. 初始化x0,参数σ0,容忍度ε 2. 循环直到收敛: a. 计算梯度g_k和Hessian矩阵H_k b. 解子问题找到方向d_k,使得m_k(d)最小化 c. 计算实际下降量与模型预测下降量的比值,决定是否接受步长并调整σ_k d. 更新x_{k+1} = x_k + d_k 在代码实现时,解子问题可能需要使用数值优化方法,比如迭代法或信任域方法。但由于三次模型可能有解析解吗?或者需要近似解?这部分可能需要进一步查阅资料。例如,有研究指出,当模型的三次项存在时,可以通过某些技巧找到d的最优解,但具体实现可能较复杂。 对于代码示例,用户可能需要Python实现。考虑到Hessian的计算可能成本高,可以假设目标函数是已知的,或者使用自动微分库如PyTorch或TensorFlow来计算梯度和Hessian。但为了简化,这里可能需要一个简单的例子,比如优化一个二次函数加上高项,或者非凸函数。 例如,考虑目标函数f(x) = x^4 - 3x^3 + 2,这里Hessian在某个点可能为负,传统牛顿法可能失效,但三次正则化法可以通过调整σ_k来保证收敛。 算法细节方面,需要处理如何动态调整σ_k,通常据实际下降与预测下降的比率来调整。如果比率低,说明模型不够准确,需要增大σ_k以加强正则化,反之则减小。这类似于信任域方法中的调整策略。 另外,引用[3]提到了修正步长α_k,可能三次正则化法不需要线搜索,而是通过调整σ_k来控制步长。所以每迭代的方向d_k的模长会受到σ_k的影响,较大的σ_k会导致更小的步长,从而保证稳定性。 总结步骤,代码实现可能包括: - 计算梯度和Hessian - 解子问题得到d - 调整σ_k - 更新x 在解子问题部分,可能需要数值优化方法,比如使用牛顿法或梯度下降来找d的最小值。但具体如何高效解需要进一步思考。例如,对于一维问题,三次方程可能有解析解,但对于高维情况,可能需要迭代解。 现在,需要将这些思路整理成结构化的回答,包含算法步骤、代码示例和相关细节。同时,用户还希望生成相关问题,可能需要围绕三次正则化的优缺点、与其他方法(如标准牛顿法、信任域法)的比较、参数选择的影响等方面提问。</think>### 三次正则化牛顿法实现详解 #### 算法原理 三次正则化牛顿法在经典牛顿法基础上增加**三次正则项**,用于控制步长并增强稳定性。目标函数模型为: $$ m_k(d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2}d^T \nabla^2 f(x_k) d + \frac{\sigma_k}{3} \|d\|^3 $$ 其中$\sigma_k > 0$是动态调整的正则化系数[^3]。 #### 实现步骤 1. **初始化**:设定初始点$x_0$,正则化系数$\sigma_0=1$,容忍度$\epsilon=1e-6$ 2. **迭代循环**: - 计算梯度$g_k = \nabla f(x_k)$和Hessian$H_k = \nabla^2 f(x_k)$ - **解子问题**:找到$d_k$使$m_k(d)$最小化 - **计算下降比**: $$ \rho_k = \frac{f(x_k) - f(x_k + d_k)}{m_k(0) - m_k(d_k)} $$ - **调整正则化系数**: - 若$\rho_k < 0.25$,增大$\sigma_{k+1} = 2\sigma_k$ - 若$\rho_k > 0.75$,减小$\sigma_{k+1} = 0.5\sigma_k$ - **更新迭代点**:若$\rho_k > 0.1$则接受步长$x_{k+1} = x_k + d_k$ #### 代码示例(Python) ```python import numpy as np from scipy.optimize import minimize_scalar def cubic_newton(f, grad, hess, x0, max_iter=100, tol=1e-6): x = x0 sigma = 1.0 for _ in range(max_iter): g = grad(x) H = hess(x) # 子问题解(一维示例) def subproblem(d): return f(x) + g*d + 0.5*H*d**2 + sigma/3 * abs(d)**3 res = minimize_scalar(subproblem) d = res.x # 计算下降比 actual_reduction = f(x) - f(x + d) predicted_reduction = - (g*d + 0.5*H*d**2 + sigma/3 * abs(d)**3) rho = actual_reduction / predicted_reduction if predicted_reduction != 0 else 0 # 调整正则化系数 if rho < 0.25: sigma *= 2 elif rho > 0.75: sigma *= 0.5 # 接受迭代 if rho > 0.1: x = x + d # 收敛判断 if np.linalg.norm(g) < tol: break return x # 测试函数:f(x) = x^4 - 3x^3 + 2 f = lambda x: x**4 - 3*x**3 + 2 grad = lambda x: 4*x**3 - 9*x**2 hess = lambda x: 12*x**2 - 18*x x_opt = cubic_newton(f, grad, hess, x0=2.5) print(f"Optimal solution: x = {x_opt:.4f}") ``` #### 关键细节说明 1. **子问题解**:示例中使用标量优化,高维情况需采用: - 信赖域方法 - 共轭梯度法结合截断迭代 - 近似解析解方法(当$\|d\|$较大时,三次项主导) 2. **正则化系数调整**:通过$\rho_k$指标实现自适应调节: - $\rho_k \approx 1$:模型准确,可放大步长 - $\rho_k \ll 1$:模型不准确,需缩小步长 3. **收敛特性**: - 全局收敛性:当$\sigma_k$足够大时保证收敛 - 局部超线性收敛:在最优解附近恢复经典牛顿法速度 #### 优势对比 | 特性 | 经典牛顿法 | 三次正则化法 | |-----------|--------------|-------------| | 非凸问题收敛性 | 可能发散 | 全局收敛保证 | | 步长控制 | 固定$\alpha=1$ | 自适应正则化调整 | | 计算成本 | 低(但可能不稳定) | 略高(需解子问题) |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shashank497

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值