组合数的四种求解方式,递推,快速幂,Lucas,高精度&线性筛


本文介绍求组合数的四种方法


一、递推法——杨辉三角

1.1 问题描述

有q(q <= 10000)组询问,每组询问两个整数n、m(1 <= m <= n <= 2000),求C(n, m) mod (1e9 + 7)的值。

1.2 递推法

C n m   =   C n − 1 m   +   C n − 1 m − 1 C_{n}^{m} \ = \ C_{n - 1}^{m} \ + \ C_{n - 1}^{m - 1} Cnm = Cn1m + Cn1m1

即第i个数选或不选

选:那么从剩下的n - 1个数中再挑出m - 1个数

不选:那么从剩下的n - 1个数中挑出m 个数

二者累加,即上述公式

时间复杂度O(n^2)

1.3 代码实现

const int N = 2010, mod = 1e9 + 7;

int C[N][N];

void init(){
	for(int i = 0; i < N; i++) C[i][0] = C[i][i] = 1;
	for(int i = 1; i < N; i++)
		for(int j = 1; j < i; j++)
			C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
}

二、快速幂

2.1 问题描述

有q(q <= 10000)组询问,每组询问两个整数n、m(1 <= m <= n <= 1e5),求C(n, m) mod (1e9 + 7)的值。

注意该问题的数据范围扩大到1e5了,再次使用递推法必然会MLE和TLE

2.2 快速幂

费马小定理

若p为质数,且a,p互质,则a ^ (p-1) ≡ 1(mod p)

而1e9 + 7是竞赛中非常常见的一个质数,那么给定 a,我们能够通过快速幂计算出其逆元为 a ^ (1e9 + 7 - 2) mod (1e9 + 7)

那么我们可以O(n log mod)预处理出阶乘fact[]和阶乘的逆元inv[]
f a c t [ i ] = i ∗ f a c t [ i − 1 ]   ( m o d   1 e 9 + 7 ) i n v [ i ] = 1 i !   ( m o d   1 e 9 + 7 ) = ( 1 ( i − 1 ) !   ( m o d   1 e 9 + 7 ) ) × ( 1 i   ( m o d   1 e 9 + 7 ) )   ( m o d   1 e 9 + 7 ) = i n v [ i − 1 ] × i 1 e 9 + 5   ( m o d   1 e 9 + 7 ) \begin{array}{l} fact[i] = i * fact[i - 1] \ (mod \ 1e9+7) \\ inv[i] = \frac{1}{i!} \ (mod \ 1e9+7) \\ = (\frac{1}{(i-1)!} \ (mod \ 1e9+7)) \times (\frac{1}{i} \ (mod \ 1e9+7))\ (mod \ 1e9+7)\\ = inv[i-1] \times i^{1e9 + 5} \ (mod \ 1e9+7) \end{array} fact[i]=ifact[i1] (mod 1e9+7)inv[i]=i!1 (mod 1e9+7)=((i1)!1 (mod 1e9+7))×(i1 (mod 1e9+7)) (mod 1e9+7)=inv[i1]×i1e9+5 (mod 1e9+7)
然后对于任意组合数查询,可以O(1)计算出C(n,m) = fact[n] * inv[m] * inv[n - m] % mod

预处理时间复杂度O(n logmod)

查询时间复杂度O(1)

2.3 代码实现

typedef long long LL;
const int N = 1e5 + 10, mod = 1e9 + 7;

LL fact[N], inv[N];

LL qp(LL a, LL b){
	LL res = 1;
	while(b){
		if(b & 1) res = res * a % mod;
		a = a * a % mod, b >>= 1;
	}
	return res;
}

void init(){
	fact[0] = inv[0] = 1;
	for(int i = 1; i < N; i ++){
		fact[i] = i * fact[i - 1] % mod;
		inv[i] = inv[i - 1] * qp(i, mod - 2) % mod;
	}
}

LL getC(LL m, LL n){
	return fact[n] * inv[n - m] % mod * inv[m] % mod;
}

三、卢卡斯定理

3.1 大组合数取模问题

给定正整数n,m,p的值,求出C(n,m) (mod p)的值。

其中 1 <= m <= n <= 1e18,1 <= p <= 1e5,保证 p 为质数

3.2 卢卡斯(Lucas)定理

3.2.1 定理内容

C n m   ≡   C n / p m / p C n   m o d   p m   m o d   p   ( m o d   p )   , 其中 p 为质数 C_{n}^{m} \ \equiv \ C_{n/p}^{m/p} C_{n \ mod \ p}^{m \ mod \ p} \ (mod \ p) \ ,其中p为质数 Cnm  Cn/pm/pCn mod pm mod p (mod p) ,其中p为质数

n mod p 和 m mod p都是小于 p 的数, p <= 1e5,这个我们可以直接快速幂求解

C(n / p, m / p)可以继续Lucas定理递归求解

递归出口:m = 0,返回1

3.2.2引理1

C p x ≡ 0   ( m o d   p ) ,   0 < x < p C_{p}^{x} \equiv 0\ (mod \ p), \ 0 \lt x \lt p Cpx0 (mod p), 0<x<p

证明:
C p x = p ! x ! ( p − x ) ! = p x ( p − 1 ) ! ( x − 1 ) ! ( p − x ) ! C p x ≡ p ⋅ i n v ( x ) C p − 1 x − 1 ≡ 0 ( m o d   x ) \begin{array}{l} C_{p}^{x} &= \frac{p!}{x!(p-x)!} \\ & = \frac{p}{x} \frac{(p-1)!}{(x-1)!(p-x)!} \\ C_{p}^{x} &\equiv p \cdot inv(x)C_{p-1}^{x-1} \equiv 0(mod \ x) \end{array} CpxCpx=x!(px)!p!=xp(x1)!(px)!(p1)!pinv(x)Cp1x10(mod x)

3.2.3 引理2

( 1 + x ) p ≡ 1 + x p ( m o d   p ) \begin{array}{l} (1+x)^{p} \equiv 1 + x^{p}(mod \ p) \\ \end{array} (1+x)p1+xp(mod p)

证明:
( 1 + x ) p = ∑ i = 0 p C p i x i 由引理 1 ,可知除了 1 , x p , 其它项 m o d   p 为 0 故, ( 1 + x ) p ≡ 1 + x p ( m o d   p ) \begin{array}{l} (1+x)^{p} = \sum_{i=0}^{p}C_{p}^{i}x^{i} \\ 由引理1,可知除了1,x^{p},其它项mod \ p为0\\ 故,(1+x)^{p} \equiv 1 + x^{p} (mod \ p) \end{array} (1+x)p=i=0pCpixi由引理1,可知除了1xp,其它项mod p0故,(1+x)p1+xp(mod p)

3.2.4 证明

$$
\begin{array}{l}
令n=ap+b,\ m=cp+d \
(1+x)^{n} \equiv \sum_{i=0}{n}C_{n}{i}x^{i} \ (mod\ p)\cdots ① \
(1+x)^{n} \equiv (1+x)^{ap+b} \
\equiv ((1+x){p}){a}(1+x)^{b} \
\equiv (1+x{p}){a}(1+x)^{b} \
\equiv \sum_{i=0}{a}C_{a}{i}x^{ip}\cdot \sum_{j=0}{b}C{b}{j}x^{j}(mod\ p)\cdots ②\
①中x{m}系数为C_{n}{m} \
②中x{m}=x{cp}\cdot x{d}的系数为C_{a}{c}C_{b}^{d}\
故C_{n}^{m}\equiv C_{a}{c}C_{b}{d}(mod\ p)\
故C_{n}^{m}\equiv C_{n/p}^{m/p}C_{n % p}^{m % p}(mod\ p)。证毕\
时间复杂度:O(p\log p + \log_{p}n)

\end{array}
$$

3.3 代码实现

typedef long long LL;
const int N = 1e5 + 10;
int n, m, p;
LL fact[N], inv[N];

LL qp(LL a, LL b){
	LL res = 1;
	while(b){
		if(b & 1) res = res * a % p;
		a = a * a % p, b >>= 1;
	}
	return res;
}

void init(){
	fact[0] = inv[0] = 1;
	for(int i = 1; i <= p; i ++){
		fact[i] = i * fact[i - 1] % p;
		inv[i] = inv[i - 1] * qp(i, p - 2) % p;
	}
}

LL getC(LL m, LL n){
    if(n < m) return 0;
	return fact[n] * inv[n - m] % p * inv[m] % p;
}

int lucas(int m, int n){
	if(!m) return 1;
	return lucas(m / p, n / p) * getC(m % p, n % p) % p;
}

3.4 OJ模板

P3807 【模板】卢卡斯定理/Lucas 定理 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

注意getC对n < m特判

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int n, m, p;
LL fact[N], inv[N];

LL qp(LL a, LL b){
	LL res = 1;
	while(b){
		if(b & 1) res = res * a % p;
		a = a * a % p, b >>= 1;
	}
	return res;
}

void init(){
	fact[0] = inv[0] = 1;
	for(int i = 1; i <= p; i ++){
		fact[i] = i * fact[i - 1] % p;
		inv[i] = inv[i - 1] * qp(i, p - 2) % p;
	}
}

LL getC(LL m, LL n){
    if(n < m) return 0;
	return fact[n] * inv[n - m] % p * inv[m] % p;
}

int lucas(int m, int n){
	if(!m) return 1;
	return lucas(m / p, n / p) * getC(m % p, n % p) % p;
}

int main(){
	//freopen("in.txt", "r", stdin);
	int _ = 1;
	cin >> _;
	
	while(_--){
		cin >> n >> m >> p;
		init();
		cout << lucas(n, n + m);
		if(_)
			cout  << '\n';
	}
	return 0;
}

四、高精度、线性筛

4.1 大组合数不取模问题

给定两个整数n,m(1 <= m <= n <= 10000),求C(n, m)的值

组合数增长速度很快,不取模的情况下,需要用高精度存取。

C(100, 50)为30位数,C(1000, 500)是300位,C(10000,5000)是3009位数

4.2 算法流程

  1. 筛质数,筛出2~n内的质数
  2. 枚举质因子
    1. 计算C(n, m)内的质数个数s
    2. 利用高精度计算答案乘s次p

关于如何快速计算阶乘质因子p的次数可以做这道题:197. 阶乘分解 - AcWing题库

就是贡献法:对于质数p,p的倍数有多少个?p^2的倍数有多少个……我们直接累加Σ n / pi,就是pc中的c,第一次,全体p的倍数贡献了1,第二次全体p^2倍数也累加了1,第三次……这样保证了不重不漏

时间复杂度的话由于涉及到调和级数的极限,但是1e4量级远达不到,我们以n = 10000,m = 5000的情况计算最坏时间复杂度

质数个数1229,Σs = 851,len = 3009,851 * 3009 大概也就2e6,效率还是很高的

4.3 代码实现

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 10010;
int primes[N], cnt;
bool isprime[N];

void init(int n){
	for(int i = 2; i <= n; i++){
		if(!isprime[i]) primes[cnt++] = i;
		for(int j = 0; i * primes[j] <= n; j++){
			isprime[i * primes[j]] = 1;
			if(!(i % primes[j])) break;
		}
	}
}

int getnum(int n, int p){
	int res = 0;
	while(n) res += n / p, n /= p;
	return res;
}

int getps(int n, int m, int p){
	return getnum(n, p) - getnum(m, p) - getnum(n - m, p);
}

void mul(int *a, int b, int& len){
	int t = 0;
	for(int i = 0; i < len; i++){
		t += a[i] * b;
		a[i] = t % 10;
		t /= 10;
	}
	while(t)
		a[len] = t % 10, t /= 10, len++;
}

int main(){
	int n, m;
	cin >> n >> m;
	init(n);
	int A[N]{0}, len = 1;
	A[0] = 1;
	for(int i = 0; i < cnt; i++){
		int p = primes[i];
		int s = getps(n, m, p);
		while(s--)
			mul(A, p, len);
	}
	for(int i = len - 1; i >= 0; i--)
			cout << A[i];
	return 0;
}
  • 45
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值