蓝桥杯 K好数

题目:

问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式
输入包含两个正整数,K和L。

输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

题解:

dp(i,j)表示位数为i,最后一位是j的K进制好数,
状态转移方程:

dp(i,j)=sum(dp(i-1,k)); (abs(k-j)!=1

“由于这个数目很大,请你输出它对1000000007取模后的值”,注意计算过程中要取模。

package dp.KGoodNumber;

import java.util.Scanner;

public class Main {

    static int mod=1000000007;
    public static void main(String[] args) {
        int K,L;
        Scanner sc=new Scanner(System.in);
        K=sc.nextInt();L=sc.nextInt();
        int[][]dp=new int[L+10][K+10];

        for(int i=1;i<K;i++){
            dp[1][i]=1;
        }

        for(int i=2;i<=L;i++)
            for(int j=0;j<K;j++){
                for(int k=0;k<K;k++){

                    if(Math.abs(j-k)!=1)
                        dp[i][j]=(dp[i-1][k]+dp[i][j])%mod;

                }

            }

        int sum=0;
        for(int j=0;j<K;j++){
            sum=(dp[L][j]%mod+sum)%mod;
            //sum+=dp[L][j];
        }

        System.out.println(sum);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值