题目:
问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
题解:
dp(i,j)表示位数为i,最后一位是j的K进制好数,
状态转移方程:
dp(i,j)=sum(dp(i-1,k)); (abs(k-j)!=1
“由于这个数目很大,请你输出它对1000000007取模后的值”,注意计算过程中要取模。
package dp.KGoodNumber;
import java.util.Scanner;
public class Main {
static int mod=1000000007;
public static void main(String[] args) {
int K,L;
Scanner sc=new Scanner(System.in);
K=sc.nextInt();L=sc.nextInt();
int[][]dp=new int[L+10][K+10];
for(int i=1;i<K;i++){
dp[1][i]=1;
}
for(int i=2;i<=L;i++)
for(int j=0;j<K;j++){
for(int k=0;k<K;k++){
if(Math.abs(j-k)!=1)
dp[i][j]=(dp[i-1][k]+dp[i][j])%mod;
}
}
int sum=0;
for(int j=0;j<K;j++){
sum=(dp[L][j]%mod+sum)%mod;
//sum+=dp[L][j];
}
System.out.println(sum);
}
}