【近似最近邻搜索】在茫茫点集中,怎么找到你的邻居

本文探讨了在大规模点集中进行最近邻搜索的问题,从暴力解法到分布式解法,再到使用IVF、NSW和HNSW等优化算法。通过这些方法,可以在保证一定精度的同时,显著降低计算复杂度,适应大数据场景的需求。
摘要由CSDN通过智能技术生成

转载请注明出处

一、背景

我们从最最最简单的场景开始,假设在一个二维平面上,现有N个点,如下图所示
在这里插入图片描述
现在给你一个点,求K个最近的点(欧式距离),如下图所示
在这里插入图片描述

肉眼很容易可以看出,以query点为中心画个圆,慢慢往外扩展,直到包含K个点,然后这K个点就是最近的点。
看起来很容易,但这得给算法实现个眼睛啊!

二、暴力解法

这里需要遍历所有的N个点跟query点分别求个距离,然后找出K个最相近的点。
咱们专注于这个算法本身,假设距离计算的复杂度为1,那么暴力解法的复杂度为:N + NlogK

假设N很大,在没有考虑距离计算的复杂度前提下,其实这复杂度已经很高了。那如果是单机,估计实现不了在线实时计算了,有没有办法解决呢?

三、分布式解法

把点随机分布到不同机器上,然后求解的时候每台机器都算个top K出来,再合并。如下图所示:<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值