湖北民族学院oj 1883 之 Sequence Number

1883: Sequence Number


Time Limit: 1 Sec     Memory Limit: 1280 MB
Total Submissions: 20     Accepted: 6
[ Submit]   [ Statistic]   [ Go Back]

题目描述

     In Linear algebra, we have learned the definition of inversion number:

    Assuming A is a ordered set with n numbers ( n > 1 ) which are different from each other. If exist positive integers i , j, ( 1 ≤ i < j ≤ n and A[i] > A[j]), <A[i], A[j]> is regarded as one of A’s inversions. The number of inversions is regarded as inversion number. Such as, inversions of array <2,3,8,6,1> are <2,1>, <3,1>, <8,1>, <8,6>, <6,1>,and the inversion number is 5.

     Similarly, we define a new notion —— sequence number, If exist positive integers i, j, ( 1 ≤ i ≤ j ≤ n and A[i]  <=  A[j], <A[i], A[j]> is regarded as one of A’s sequence pair. The number of sequence pairs is regarded as sequence number. Define j – i as the length of the sequence pair.

     Now, we wonder that the largest length S of all sequence pairs for a given array A. 

输入描述

    There are multiply test cases.

    In each case, the first line is a number N(1<=N<=50000 ), indicates the size of the array, the 2th ~n+1th line are one number per line, indicates the element Ai (1<=Ai<=10^9) of the array.  

输出描述

 Output the answer S in one line for each case. 

输入样例

5
2 3 8 6 1

输出样例

3


AC代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e5+10;

int a[maxn];

int main()
{
	int n,maxi;
	while(cin>>n)
	{
	    maxi=0;
		for(int i=0;i<n;i++) cin>>a[i];
		for(int i=n-1;i>=0;i--)
        {
            for(int j=0;j+i<n;j++)
            {
                if(j<i && a[j]<=a[i+j])
                {
                    maxi=max(maxi,i);
                    i=-1;j=n;//退出多重循环
                    break;
                }
            }
        }
        cout<<maxi<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值