Description
某旅游区里面有N个景点。两个景点之间可能直接有道路相连,用a[i][j]表示它的长度,否则它们之间没有直接的道路相连。这里所说的道路是没有规定方向的,也就是说,如果从i到j有直接的道路,那么从j到i也有,并且长度与之相等。
旅游区规定:每个游客的旅游线路只能是一个回路(好霸道的规定)。也就是说,游客可以任取一个景点出发,依次经过若干个景点,最终回到起点。一天,Smart决定到这个景区来旅游,由于他实在已经很累了,于是他决定尽量少走一些路。
他想请你帮他求出最优的路线。怎么样,不是很难吧?
Input
输入有多组数据。对于每组数据:
第一行有两个正整数N,M,分别表示景点个数和有多少对景点之间直接有边相连;
接下来M行,每行三个正整数,分别表示一条道路的两端的编号,以及这条道路的长度(长度≤1000)。
如果有重边,以输入的最后一条边为准。
Output
对于每组数据,输出一行,如果该回路存在,则输出一个正整数,表示该回路的总长度;否则输出"No solution."(不要输出引号)
Sample Input
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
4 3
1 2 10
1 3 20
1 4 30
Sample Output
61
No solution.
Hint
100%的数据:N≤100,M≤10000。
思路
这道题要考虑floyd算法的根本状态 即f[k][i][j]表示只能使用1~ k号点位中间媒介时i~ j的最短路,当更新到f[k-1][i][j]时,k号节点还没有更新,因此i~ k~ j与f[i][j]构成一个环 ans=min{f[i][j]+f[i][k]+f[k][j]}
注意:floyed的第三层循环中j只能枚举到k-1
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=105;
const int oo=1<<29;
int a[N][N],f[N][N];
inline int mn(int x,int y)
{
return x<y?x:y;
}
int main()
{
int n,m,i,j,k;
while(~scanf("%d%d",&n,&m))
{
int x,y,z;
for(i=0;i<=100;i++)
for(j=0;j<=100;j++)
{
if(i==j)
f[i][j]=a[i][j]=1;
else
f[i][j]=a[i][j]=oo;
}
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
a[x][y]=z;
a[y][x]=z;
f[x][y]=z;
f[y][x]=z;
}
int ans=oo;
for(k=1;k<=n;k++)
{
for(i=1;i<=k-1;i++)
for(j=i+1;j<=k-1;j++)
ans=mn(ans,f[i][j]+a[i][k]+a[k][j]);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
if(i==j||j==k||i==k)
continue;
f[i][j]=mn(f[i][j],f[i][k]+f[k][j]);
}
}
if(ans==oo)
printf("No solution.\n");
else
printf("%d\n",ans);
}
return 0;
}