题目描述
瑞瑞想要亲自修复在他的一个小牧场周围的围栏。他测量栅栏并发现他需要N(1≤N≤20,000)根木板,每根的长度为整数Li(1≤Li≤50,000)。于是,他神奇地买了一根足够长的木板,长度为所需的N根木板的长度的总和,他决定将这根木板切成所需的N根木板。(瑞瑞在切割木板时不会产生木屑,不需考虑切割时损耗的长度)瑞瑞切割木板时使用的是一种特殊的方式,这种方式在将一根长度为x的模板切为两根时,需要消耗x个单位的能量。瑞瑞拥有无尽的能量,但现在提倡节约能量,所以作为榜样,他决定尽可能节约能量。显然,总共需要切割N-1次,问题是,每次应该怎么切呢?请编程计算最少需要消耗的能量总和。
输入格式:
第一行: 整数N,表示所需木板的数量
第2到N+1行: 每行为一个整数,表示一块木板的长度
输出格式:
一个整数,表示最少需要消耗的能量总和
输入样例
3
8 5 8
输出样例
34
题解
本题又名
拆分果子
就是把“合并果子”反过来做,代码差不多
但是,要用long long
code
#include<queue>
#include<cstdio>
#include<iostream>
using namespace std;
priority_queue<int, vector<int>, greater<int> >q;
int a[1000010],n;
long long ans;
int main()
{
scanf("%d",&n);
int i;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
q.push(a[i]);
}
for(i=1;i<=n-1;i++)
{
int a=q.top();
q.pop();
int b=q.top();
q.pop();
ans+=a+b;
q.push(a+b);
}
printf("%d\n",ans);
return 0;
}