法里序列--欧拉函数的线性筛法

首先,我们讲一讲欧拉函数

phi(n)表示1~n中与n互质的数个数
有如下引理(设p为质数)

  • 引理1 phi( p )= p - 1
  • 引理2 phi( pa)=(p-1)*pa-1
  • 引理3 phi(a*b)=phi(a)*phi(b)

在线性时间内,求出所有数的欧拉函数需要用到如下性质

  • 性质1 phi( p )= p - 1
  • 性质2 若i mod p=0 ,那么phi(i * p)=p * phi(i)
  • 性质3 若i mod p !=0 ,那么phi(i * p)=phi(i) * (p-1)

证明在最后,应该没有人想看吧
线性筛求欧拉函数的代码

void getphi()
{
	int i,j;
	phi[1]=1;
	for(i=2;i<=N;i++)
	{
		if(!isprime[i])//如果i是质数 
		{
			prime[++tot]=i;
			phi[i]=i-1;//当i是质数时 phi[i]=i-1
		}
		for(j=1;j<=tot;j++)
		{
			if(i*prime[j]>N)
				break;
			isprime[i*prime[j]]=1;//将质数prime[j]的i倍筛掉,保证i*prime[j]的最大因子为 prime[j] 
			if(i%prime[j]==0) 
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			else
				phi[i*prime[j]]=phi[i]*(prime[j]-1);//prime[j]-1就是phi[prime[j]],利用欧拉函数的积性 
		}
	}
}
例题:法里序列

Description
法里序列Fn(n≥2)为一个形如a/b(0<a<b≤n且a、b互质)的递增序列,前几个法里序列为:
F2={1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
你的任务是计算法里序列Fn的项数。
Input
有多组测试数据,每一组测试数据占一行,包含一个正整数n,输入数据以0结束。
Output
对每个测试数据要输出一行,即法里序列Fn的项数。
Sample Input
2
3
4
5
0
Sample Output
1
3
5
9
Hint
100%的数据:2≤n≤10^6。

分析见上

完整的代码

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000005;
long long phi[N],prime[N],tot;
bool isprime[N];
void getphi()
{
	int i,j;
	phi[1]=1;
	for(i=2;i<=N;i++)
	{
		if(!isprime[i])
		{
			prime[++tot]=i;
			phi[i]=i-1;
		}
		for(j=1;j<=tot;j++)
		{
			if(i*prime[j]>N)
				break;
			isprime[i*prime[j]]=1;
			if(i%prime[j]==0) 
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			else
				phi[i*prime[j]]=phi[i]*(prime[j]-1);
		}
	}
}
int main()
{
	freopen("1559.in","r",stdin);
	freopen("1559.out","w",stdout);
	int n;
	getphi();
	while(1)
	{
		scanf("%d",&n);
		if(n==0)break;
		long long ans=0;
		for(int i=1;i<=n;i++)
			ans+=phi[i]*1ll;
		printf("%lld\n",ans-1);
	}
	return 0;	
}

想copy的福利

证明
1.性质1

1~p 中只有p与p不互质

2.性质2
  • 易证:若n与i不互质,n+i与i不互质
  • [1,i]中与i不互质的整数n共有 i-phi(i)
  • 因为 n+i 与 i 不互质,所以 [1+i,i+i] 即 (i,2*i]中与i不互质的整数也是 i-phi(i)
  • 所以[1,i * p]中与i不互质的整数有 p * i - p * phi(i)
  • 因为i mod p=0 且p为质数 ,[1,i * p]中与i*p不互质的整数有 i * p - phi(i * p)
  • 因此 phi(i*p)=phi(i)*p
性质3

根据欧拉函数的积性, phi(i*p)=phi(i) * phi( p )=phi(i) * (p-1)(性质1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方有很多,下面介绍两种常见的方: 1. 分解质因数 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛 我们可以使用筛(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数在数论中有很重要的应用,例如RSA算的安全性就基于欧拉函数的难解性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值