练习4-3 求给定精度的简单交错序列部分和 (15 分)本题要求编写程序,计算序列部分和 1 - 1/4 + 1/7 - 1/10 + ... 直到最后一项的绝对值不大于给定精度eps。

【注意】理解题意:知道最后一项的绝对值不大于给定的精度  的意思是 前n-1项都是大于给定的精度 最后一项小于等于给定的精度,如果用这个

问题:最后一项是不大于,但这个最后一项就退出循环了

正解

#include<stdio.h>

int main()

{

      

 int  i = 0;

       double sum = 0;

       double eps = 0;

       scanf_s("%lf", &eps);

       for (i = 1;  ; i+=3)\\注意,这里for的条件是留空的】

       {

              if (i % 2 == 0)

                      sum -= 1.0/i;   \\  注意,这里是1.0而不是1

               elseif(i%2!=0)

                      sum += 1.0 / i;

              if ((1.0 / i) <= eps)

                      break;

       }

       printf("sum = %.6lf", sum);

       return 0;

}

 

交错序列是指一种特殊的数列,其中的项交替地取两个不同的基数,例如斐波那契数列就是一个经典的交错序列,它的每一项是前两项之和(0, 1, 1, 2, 3, 5, ...)。如果你想要计算给定精度下的交错序列部分和,可以使用循环结构来累加每个项,并考虑如何控制交替的基数。 在C语言中,你可以这样做: ```c #include <stdio.h> #include <stdlib.h> // 定义交错序列的函数,比如斐波那契序列 int fibonacci(int n, int base1, int base2) { if (n <= 0) return 0; if (n == 1 || n == 2) return base1; // 初始化的基数 if (n % 2 == 1) return fibonacci(n - 1, base1, base2); // 如果奇数,则用base1 else return fibonacci(n - 2, base2, base1); // 如果偶数,则用base2 } // 计算给定精度下的部分和 double partial_sum(int num_terms, int precision, int base1, int base2) { double sum = 0.0; for (int i = 1; i <= num_terms; ++i) { int term = fibonacci(i, base1, base2); // 对于需要高精度的情况,这里可以用long long存储term,然后转换为double并累加 sum += (double)term / pow(10, precision); } return sum; } int main() { int num_terms = 10; // 你想要的部分项数 int precision = 4; // 要求精度,即小数点后的位数 int base1 = 0, base2 = 1; double result = partial_sum(num_terms, precision, base1, base2); printf("交错序列部分和(%d项,精确到%.4f): %.4lf\n", num_terms, precision, result); return 0; } ``` 在这个例子中,`partial_sum`函数会根据给定的项数、精度以及初始基数计算交错序列部分和。记得根据实际需调整基数和精度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值