- 博客(170)
- 收藏
- 关注
原创 开源DB-GPT实现连接数据库详细步骤
第一步:安装Minicoda第二步:安装Git第三步:安装embedding 模型到model文件第三步:在Minicoda powershell分别输入。
2023-11-07 11:58:38 2381
原创 Listary——最好用的电脑搜索文件软件
简易版:https://www.listary.com/download-completion?version=stable完整功能版:Microsoft PowerToys | Microsoft Learn
2024-06-24 17:45:17 332
原创 Stable diffusion WebUI本地部署详细教程
在环境里更换镜像下载源:在C:\Users\Administrator用记事本打开并修改.condarc文件把下面的内容全部复制进去,全部覆盖原内容channels:- defaults。
2024-05-10 16:51:30 968
原创 机器学习模型代码详细解释
据进行转换和规范化'target'labels针对不平衡数据集的处理mino_nummajo_numsmo_ratiosmo_ratio据进行转换和规范化:这是一个用于将字典类型的特征转换成稀疏矩阵或密集矩阵的工具。在这里,首先创建了一个对象dvec,然后使用方法将训练特征转换为字典形式并进行转换操作,最终得到稀疏或密集矩阵。测试特征也会被相同的转换方式处理,但是这里使用了方法,因为测试数据应该使用与训练数据相同的转换规则。:这是一个用于特征缩放的工具,它通过移除平均值和缩放到单位方差来标准化特征。
2024-05-10 16:34:13 1036
原创 LEFT JOIN 子查询可能引发的误删数据
但是,由于 LEFT JOIN 的特性,即使在右表 rb_p_product_prohibitionsalemarket 中找不到匹配的记录,左表 t_mercadolibre_tag_sub_mapping 中的相应记录也会被包含在结果中,并且在右表中没有匹配的地方会被填充为 NULL。要解决这个问题,你可以将子查询中的条件稍作修改,以确保只有在右表中找到匹配的记录才会被删除。你可以尝试使用 EXISTS 子查询来实现这一点,或者直接使用 INNER JOIN 而不是 LEFT JOIN。
2024-04-30 14:54:56 259
原创 决策树-计算信息熵
其中,参数weight是每个样本的权重,d_v是包含数据的DataFrame,label是指定的特征列名(默认为'好瓜')。在代码中,使用了numpy库中的log2函数来计算对数。这段代码是用来计算在给定数据集中,针对某一特征(比如'好瓜'),以及对应的权重,计算其信息熵。信息熵是用来衡量数据的不确定性的指标,当信息熵越高时,数据的不确定性也越大。
2024-03-26 15:26:26 356
原创 决策树学习-计算数据集的信息熵
总体来说,这段代码的功能是通过遍历数据集中的标签值,计算数据集的信息熵,并返回信息熵的值。信息熵值越高,表示数据集的不确定性越大。这段代码是用来计算数据集的信息熵的函数。信息熵是用来衡量数据集的不确定性,即数据集中包含的信息量。:将输入的数据集转换为 NumPy 数组,以方便处理。:获取数据集的长度,即数据集中样本的数量。,用于记录数据集中各类别样本的数量。的函数,该函数接受一个数据集。
2024-03-26 15:24:58 567
原创 SQL的INSERT IGNORE用法
时,如果插入的数据中存在与现有记录的主键或唯一键相同的值,则 MySQL 会忽略该条记录的插入,而不会引发错误。换句话说,如果冲突发生,MySQL 将简单地跳过这条插入语句,不执行任何插入或更新操作,也不会返回错误。在发生主键或唯一键冲突时会执行指定的更新操作。这意味着如果插入的数据中存在与现有记录的主键或唯一键相同的值,则 MySQL 将尝试更新现有记录,而不是简单地忽略或跳过插入操作。因此,虽然两者都用于处理唯一键冲突,但它们的行为方式是不同的。主要用于在不想处理冲突时忽略插入操作,而。
2024-03-19 16:21:33 822
原创 SQL的ON DUPLICATE KEY UPDATE使用方法
是 MySQL 中的一种功能,用于在插入数据时检测到主键或唯一键冲突时执行更新操作。如果插入的数据中存在与现有记录的主键或唯一键相同的值,MySQL 将执行指定的更新操作而不是抛出错误。(或其他设置为唯一键的字段)已经存在于表中,则会执行更新操作,而不是插入新的记录。更新操作将会将已存在的记录的。这种功能可确保数据库中不会出现重复的记录,并且在出现冲突时能够按照指定的方式处理。将不会生效,插入操作会正常进行,而不会触发更新操作。的记录,该记录将会被更新为新的值。在您的示例中,您插入了一条记录到。
2024-03-19 15:56:06 676
原创 生成动态指定条件的拼接SQL
这部分查询从表t_mercadolibre_product_publish_execute中选择source_id和site_id列,其中publish_status为3。然后使用GROUP BY对结果按source_id和site_id进行分组,确保每个(source_id, site_id)组合只出现一次。外部查询使用内部查询的结果作为输入,对每个(source_id, site_id)组合生成一个DELETE语句。
2024-03-13 10:19:28 565
原创 数据库查找死锁状态1
- 查看当前数据库最新的死锁日志 通过关键字LATEST DETECTED DEADLOCK快速定位。# 查询锁等待详细信息----> blocking_pid(锁源的连接线程)
2024-03-06 17:13:14 369
原创 python删除excel表每行的指定词后的数据
如果某个元素中包含字符串"添加时间",则将该元素按照"添加时间"进行切分,只保留切分后的第一个部分(即"添加时间"之前的部分)作为新的元素值;如果不包含"添加时间",则直接返回原来的元素值。
2024-02-27 09:27:22 427
原创 词频分析代码详细解释
首先,通过判断单词是否只包含字母来保留只含字母的单词,即过滤掉包含数字或其他字符的单词。列表中的每个关键词及其得分,如果关键词包含多个单词(通过判断关键词中是否存在空格来判断),则将其转换为小写字母,并添加到。的函数,该函数用于格式化需要计算的数据,将原始数据格式转换成二维数组。列表合并,并去除重复的元素,得到最终的分词结果,并将其作为函数的返回值。列表中的每个短语,并根据短语在文本中的出现次数,将该短语重复添加到。的函数,用于计算关键词的共现次数和构建缩减后的矩阵。,该表用于去除单词中的标点符号。
2024-02-05 15:49:07 1018
原创 使用Python和Pandas将Excel文件中的每个Sheet保存为独立文件
【代码】使用Python和Pandas将Excel文件中的每个Sheet保存为独立文件。
2024-02-02 15:36:26 908
原创 如何衡量人工智能的准确性?
Scikit-learn 是另一个用于 Python 机器学习的开源库,具有用于数据分析、预处理、特征提取、模型选择、训练、测试和评估的模块和功能。确保数据是高质量的、相关的并且对于问题和目标来说是平衡的。有一些挑战和陷阱可能会影响人工智能系统的准确性或其计算方式,例如数据质量、数据分布、评估指标以及道德和社会影响。根据问题的类型和复杂性,可以使用不同的指标来衡量人工智能系统的准确性。例如,如果人工智能系统被设计用来对动物图像进行分类,那么它的准确度就是它正确标记为猫、狗、鸟等的图像的百分比。
2024-01-17 17:23:33 1075
原创 SQL使用WITH ROLLUP子句计算每个分组的合计值
SELECT IFNULL(order_date, '总计') AS '日期', SUM(sales_amount) AS '销售总额', COUNT(*) AS '订单数' FROM t_sales GROUP BY order_date WITH ROLLUP;先来看一个示例的SQL查询语句,假设我们有一个名为t_sales的表,记录了销售订单的信息,包括订单日期、销售额等字段。我们想要按照订单日期进行分组,并计算每天的销售总额和总订单数,同时还希望得到整体的销售总额和订单数。
2023-12-18 10:33:44 818
原创 更新钉钉文档封装好的代码
插入数据到指定表格:将DataFrame格式的数据插入到指定的工作表中。读取数据:读取指定区域的数据,并将其转换为DataFrame格式返回。获取访问令牌:通过设置机器人的密钥和密钥获取访问令牌。获取全部单元格区域:获取工作表的全部区域。清空数据:清空指定区域的数据,但保留格式。获取工作表信息:获取工作表的名称和ID。获取工作表描述:获取工作表的描述信息。更新数据:更新指定区域的数据。
2023-12-18 10:28:32 508
原创 接口返回HTML页面详解
库发送GET请求,添加了自定义的headers和cookies,以模拟浏览器访问。使用复制的进网站转换为python代码,选取url和headers和cookies参数。的标签,该标签包含了搜索结果的总数量。属性获取该标签的文本内容,并使用。库对返回的HTML进行解析。方法去除多余的空白字符。
2023-12-15 17:54:55 1223
原创 使用Jython将Python代码转换为Java可执行文件
使用Java编译器将Java代码编译为字节码文件,然后使用Java虚拟机运行该字节码文件。这将生成一个Java字节码文件,文件名与Python代码文件名相同,但扩展名为。在第三步中,我们使用Jython将Python代码转换为Java字节码文件。在Java中编写代码,它将运行转换后的Python代码。在第四步中,我们需要编写Java代码来运行转换后的Python代码。第一条命令用于编译Java代码,第二条命令用于运行生成的可执行文件。步骤3:将Python代码转换为Java字节码。为后缀的文件中,比如。
2023-12-07 17:59:23 1388
原创 使用SQL中的LIKE操作符进行模糊匹配:原理与用法
例如,使用'apple%'可以匹配以'apple'开头的字符串,'%apple'可以匹配以'apple'结尾的字符串,而'%apple%'可以匹配任意位置包含'apple'字符串的字符串。%表示匹配任意长度的任意字符,例如'%apple%'可以匹配包含'apple'字符串的任意位置的字符串。通配符%的灵活运用: 通配符%非常灵活,可以匹配任意长度的任意字符,但过度使用通配符会影响查询效率。因此,在使用LIKE操作符进行模糊匹配时,应该尽可能地避免使用通配符,或者将通配符放在关键词的结尾位置。
2023-12-06 10:26:56 2237
原创 pandas超出print限制时如何查看完整dataframe
我们期望能够打印出数据框的所有行。然而,在某些情况下,即使设置了该选项,仍然无法完全打印出所有行的内容。这是因为数据量可能超出了系统的内存或显示限制。这将把数据框导出到一个 Excel 文件中,不受显示限制。通过打开 Excel 文件,我们可以方便地查看和分析所有的数据。这将输出数据框的行数,让我们快速了解数据框的规模。虽然它不会显示具体的数据内容,但对于获取整体数据框的大小信息非常有用。为了解决这个问题,我们可以采取一些替代方法来检查数据框的完整性。下面介绍两种常用的方法:使用。
2023-11-30 11:30:02 560
原创 使用SSH和SCP传输文件———详细入门教学实践
这将会把远程主机的密钥添加到你本地计算机上的 known_hosts 文件中,以便下次连接时进行验证。这个消息是在你第一次连接到远程主机时出现的,并且SSH客户端无法验证主机的真实性。scp -r /本地路径/文件夹 用户名@远程虚拟机IP地址或主机名:/远程路径。获取远程虚拟机的IP地址或主机名以及登录凭据(用户名和密码或私钥)。稍等片刻,文件将被传输到远程虚拟机的指定路径下。替换为你要将文件传输到的远程虚拟机上的路径。替换为你要传输的本地文件的路径和文件名,替换为远程虚拟机的IP地址或主机名,
2023-11-15 13:38:53 385
原创 Python数据处理:如何自动插入相关数据到工作表中
这应该是一个自定义的计算函数,根据传入的 DataFrame 和列名进行价格计算和插入操作。请确保该函数能够正常运行,并返回预期的结果。进行左连接,基于共同的列 '系统SKU'。接下来,你删除了包含 NaN 值的行,并将结果保存在。最后,你删除了包含 NaN 值的行,并将结果插入到工作表中。的数据类型更改为 'object',然后使用。基于列 '系统SKU' 进行合并,并保存在。中选择了特定的列,并分别保存在。
2023-11-14 18:14:46 145
原创 数据处理中的重复行处理技巧与实践
方法对每个分组的产品名字进行处理。方法对分组后的数据进行去重,指定以手机号码为基准进行去重,保留第一个出现的行,得到去重后的数据。,实现将重复行的产品名字合并到第一行内,只保留第一个。的相应位置,实现将处理后的数据重新赋值给原始数据。取得当前分组的第一个产品名字,将其赋值给变量。条件筛选出手机号码不为空的行,接着使用。方法将当前分组的所有行的产品名字修改为。为了处理重复行的产品名字,首先使用。方法,将重复行的数据从原始数据。中删除,得到去重后的重复行数据。接下来,进行去重操作。变量表示当前分组的数据。
2023-11-14 17:54:44 104
原创 python限制调用接口速度
它首先检查当前时间与上次重置时间之间的时间差是否超过设定的时间段。如果超过了时间段,则重置计数器,并更新重置时间和调用次数。最后,判断调用次数是否小于最大调用次数,如果是则返回。这种速率限制器通常用于控制对外部API的访问次数,以免超出API提供商的规定限制。它能够平滑地限制请求速率,避免因短时间内大量请求而导致服务崩溃或被封禁。方法用于在每次调用后更新调用次数。当函数或接口被调用时,应该在合适的位置调用。类通过在指定时间段内限制最大调用次数来实现速率限制。方法,以便在限制内适当增加调用次数。
2023-11-13 11:13:40 317
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人