试题 算法提高 新型斐波那契数列(矩阵快速幂 Java)

问题描述   
新型斐波那契数列的第一、二、三项都为1,从第四项起每一项等于前面三项之和,求此数列第n项模m的余数。
输入格式
输入一行为两个整数n、m,用空格隔开。
输出格式   
输出一行为新型斐波那契数列第n项模m的余数。
样例输入
7 3
样例输出
2
数据规模和约定   
1 ≤ n ≤ 1018,1 ≤ m ≤ 100
题目链接新型斐波那契数列

思路:
若直接一个for循环去计算第n项的值,1018会超时。可以根据矩阵的性质以及快速幂的方法去解决。

  1. 找快速幂的底数矩阵:通过规律我们发现底数矩阵为{{0,1,0},{{0,0,1},{1,1,1}}}
    在这里插入图片描述
  2. 找到一般式
    在这里插入图片描述
  3. 因为初始矩阵{{F1},{F2},{F3}}{{1},{1},{1}},所以根据矩阵相乘的性质,实际结果 F n Fn Fn为最终快速幂得到的矩阵的第三行之和。

矩阵相乘代码:

	public static int[][] mult(int[][] a, int[][] b) {
		int[][] res = new int[3][3];
		for (int i = 0; i < 3; i++) 
			for (int j = 0; j < 3; j++) 
				for (int k = 0; k < 3; k++) 
					res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % m;
		return res;
	}

快速幂代码:

	public static int[][] fastPow(int[][] num, long k) {//矩阵快速幂
		int[][] res = new int[3][3];
		for(int i=0;i<3;i++) res[i][i] = 1;//单位矩阵,相当于数字快速幂的1
		while(k>0) {
			if ((k&1)==1) 
				res = mult(res, num);
			num = mult(num, num);
			k = k >> 1;
		}
		return res;
	}

完整代码:

import java.util.Scanner;
public class Main {	
	static int m;	//取模数
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		long n = sc.nextLong(); m = sc.nextInt();
		int[][] num = {{0,1,0},{0,0,1},{1,1,1}};//矩阵快速幂的底数
		int[][] ans = fastPow(num, n-3);	//得到快速幂后的矩阵
		System.out.println((ans[2][0]+ans[2][1]+ans[2][2]) % m);//结果为第三行之和
	}
	public static int[][] mult(int[][] a, int[][] b) {//矩阵相乘
		int[][] res = new int[3][3];
		for (int i = 0; i < 3; i++) 
			for (int j = 0; j < 3; j++) 
				for (int k = 0; k < 3; k++) 
					res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % m;
		return res;
	}
	public static int[][] fastPow(int[][] num, long k) {//矩阵快速幂
		int[][] res = new int[3][3];
		for(int i=0;i<3;i++) res[i][i] = 1;//单位矩阵,相当于数字快速幂的1
		while(k>0) {
			if ((k&1)==1) 
				res = mult(res, num);
			num = mult(num, num);
			k = k >> 1;
		}
		return res;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Easenyang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值