问题描述
新型斐波那契数列的第一、二、三项都为1,从第四项起每一项等于前面三项之和,求此数列第n项模m的余数。
输入格式
输入一行为两个整数n、m,用空格隔开。
输出格式
输出一行为新型斐波那契数列第n项模m的余数。
样例输入
7 3
样例输出
2
数据规模和约定
1 ≤ n ≤ 1018,1 ≤ m ≤ 100
题目链接:新型斐波那契数列
思路:
若直接一个for循环去计算第n项的值,1018会超时。可以根据矩阵的性质以及快速幂的方法去解决。
- 找快速幂的底数矩阵:通过规律我们发现底数矩阵为
{{0,1,0},{{0,0,1},{1,1,1}}}
- 找到一般式
- 因为初始矩阵
{{F1},{F2},{F3}}
为{{1},{1},{1}}
,所以根据矩阵相乘的性质,实际结果 F n Fn Fn为最终快速幂得到的矩阵的第三行之和。
矩阵相乘代码:
public static int[][] mult(int[][] a, int[][] b) {
int[][] res = new int[3][3];
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++)
res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % m;
return res;
}
快速幂代码:
public static int[][] fastPow(int[][] num, long k) {//矩阵快速幂
int[][] res = new int[3][3];
for(int i=0;i<3;i++) res[i][i] = 1;//单位矩阵,相当于数字快速幂的1
while(k>0) {
if ((k&1)==1)
res = mult(res, num);
num = mult(num, num);
k = k >> 1;
}
return res;
}
完整代码:
import java.util.Scanner;
public class Main {
static int m; //取模数
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong(); m = sc.nextInt();
int[][] num = {{0,1,0},{0,0,1},{1,1,1}};//矩阵快速幂的底数
int[][] ans = fastPow(num, n-3); //得到快速幂后的矩阵
System.out.println((ans[2][0]+ans[2][1]+ans[2][2]) % m);//结果为第三行之和
}
public static int[][] mult(int[][] a, int[][] b) {//矩阵相乘
int[][] res = new int[3][3];
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++)
res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % m;
return res;
}
public static int[][] fastPow(int[][] num, long k) {//矩阵快速幂
int[][] res = new int[3][3];
for(int i=0;i<3;i++) res[i][i] = 1;//单位矩阵,相当于数字快速幂的1
while(k>0) {
if ((k&1)==1)
res = mult(res, num);
num = mult(num, num);
k = k >> 1;
}
return res;
}
}