一、线段树概念
线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。它的主要优势是对于区间求和、区间求最大值、区间修改和单点修改的速度快,时间复杂度能达到 O ( l o g N ) O(logN) O(logN)。
若以常规的方法在数组中进行区间求和等操作,时间复杂度会达到 O ( n ) O(n) O(n),若操作的次数量非常大,那么就很容易超时。线段树的优势就体现出来了
线段树的实现基于一维数组,用数组下标 2 ∗ k + 1 2 * k +1 2∗k+1 的元素代表左儿子,用下标 2 ∗ k + 2 2 * k +2 2∗k+2 的元素代表右儿子来进行树的模拟
对于本文有不理解的小伙伴,建议看B站的这个视频:线段树
二、线段树模板
模板题:操作格子
1.建树
- 线段树建树的操作跟二叉树的建树操作很类似,都利用递归,构建左儿子和右儿子。
- 任意一个结点 k k k,它的左儿子为第 2 ∗ k + 1 2 * k +1 2∗k+1 个元素,右儿子为第 2 ∗ k + 2 2 * k +2 2∗k+2 个元素。本例根结点存储的是左儿子和右儿子的和,可应用于区间求和的场景
- 建树时,需要声明一个新的一维数组来存储树的元素,这个数组的大小一般设为原数组长度的4倍及以上
- static int[] arr = {1,3,5,7,9,11};
static int[] tree = new int[4 * arr.length];
代码:
/**
* @param node 当前结点
* @param l 当前结点对应的区间为l~r
* @param r
*/
public static void build(int node, int l, int r) {
if (l == r) {
tree[node] = arr[l];
return;
}
int mid = (l + r) >> 1;
int l_child = 2 * node + 1;
int r_child =

最低0.47元/天 解锁文章
3万+





