2021人工智能太湖论坛
浙江大学 李玺 团队 论文:
Ultra-fast-lane-Detection 减少计算成本,轻量化
论文:https://arxiv.org/abs/2004.11757
贡献:解决车道检测的视觉识别问题。
与深度分割方法相比,该方法不需要对每个像素进行分割,而是选择车道的位置,并在不同的维度上进行分割,具有超快的速度。此外,我们的方法使用全局特征进行预测,这有一个更大的感受域比分割公式。通过这种方式,视觉线索问题也可以得到解决。基于提出的公式,我们提出了结构损失,明确利用车道的先验信息。据我们所知,这是第一次在深层车道检测方法中明确优化这些信息的尝试。- 所提出的方法实现了国家的最先进的表现在准确性和速度在具有挑战性的库兰数据集。我们方法的轻量级版本甚至可以达到300多帧每秒,具有相同分辨率的性能,这比以前最先进的方法至少快4倍。
FacNET 通道注意力机制
Fequency Channel Attention Networks
通道注意力使用可学习的网络来衡量每个通道的重要性并生成更多信息输出。
论文:https://arxiv.org/abs/2012.11879
解读:https://blog.csdn.net/amusi1994/article/details/111596047
keyword:像素分割;目标检测;图像压缩;频域通道注意力机制
东南大学 耿新 标记分布学习机制(分类)
Label Distribution Learning(LDL)
相关算法:LDLM
地址:https://github.com/gaobb/DLDL
Keyword:标记分布学习;