一、行业背景
1)数据与算力基础夯实:互联网、物联网和移动互联网的普及使得视觉数据呈爆发式增长,为AI视觉训推技术提供了丰富的“燃料”。同时,GPU、TPU等计算芯片的广泛使用,以及云计算的兴起,让计算能力大幅提升,可高效处理海量数据,为技术发展提供了有力支撑。
2)深度学习算法推动:深度学习算法,如卷积神经网络(CNN)及其衍生算法的出现,使计算机能够自动从大量数据中学习特征、挖掘模式,极大地提高了图像识别、分类、检测等视觉任务的性能和效果,为AI视觉训推技术的广泛应用奠定了基础。
3)市场需求增长:在工业制造领域,企业对产品质量检测的精度和效率要求不断提高;在安防监控领域,对复杂场景下的目标识别、行为分析等需求日益增加。这些市场需求推动了AI视觉训推技术的快速发展。
4)技术融合发展:AI视觉技术与物联网、大数据、5G等技术的深度融合,实现了设备之间的互联互通和数据的高效传输与处理,进一步拓展了AI视觉训推技术的应用范围和价值。
二、AI训推一体技术能解决哪些行业痛点
- 传统监控效率低:传统的人工检测效率低,容易受到疲劳和主观因素的影响。
- 人力成本高:人工操作和检测需要大量人力资源,造成成本上升。
- 需求碎片化:AI应用场景高度碎片化,细分场景的算法需求差异显著,导致单个项目规模较小,难以形成标准化解决方案。
- 数据不出域:医疗、金融、政务等行业对数据本地化处理需求强烈,要求数据不离开本地服务器。然而传统云端AI方案需上传数据至公有云,存在隐私泄露风险。
因此,企业需要一种能够在本地进行数据处理和模型训练的产品和方案,既能确保数据安全,又能生产出自己特色专用算法模型。
AI视觉训推一体机是专为边缘计算场景设计的软硬件一体化设备,集数据标注、模型训练、推理优化、模型导出等功能于一体,支持从数据标注到模型部署的全流程闭环。硬件广泛适用于工业制造、安防监控、物流仓储、金融、教育等多个领域,助力企业加速AI视觉应用的落地与部署,提升生产效率、优化业务流程并创造更大的商业价值。
- 降本增效:减少80%的跨平台协作成本,训练到推理链路时延降低60%。
- 敏捷落地:开箱即用,无需复杂配置及部署,快速实现用户场景数据的模型生产、版本迭代、模型部署。
- 应用广泛:智能制造(缺陷检测、非标检测等)、智慧安防(人员入侵、烟火检测)等AI密集型领域。
三、应用场景
1)工业制造
- 质量检测:自动检测产品表面的缺陷、尺寸偏差等问题,如在电子产品制造中检测芯片、屏幕等部件的缺陷,提高产品质量和生产效率。
- 设备监控与维护:实时监测设备的运行状态,如通过图像分析检测设备的磨损、故障等情况,提前预警并安排维护。
2)安防监控
- 行为分析 :识别违规及异常行为,如未佩戴安全防护装备、人员攀爬、人员摔倒等,及时发出警报,提高公共安全水平。
- 周界防范 :对特定区域进行实时监控,一旦有人员或物体闯入,立即触发报警。
3)农业与林业
- 作物生长监测:通过无人机拍摄或田间摄像头采集图像,分析作物的生长状况、病虫害情况等,为精准农业提供支持。
- 土地资源管理:对土地进行大面积监测,评估土地质量、植被覆盖等信息,辅助农业规划和资源管理。