描述
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
分析
对于这种求所有组合的题目优先想到用递归的方法解决。方法是:将数组排序,遍历数组,对于数组中每一个元素,考虑“没有被选中”以及“第一个被选中”这两种情况,而每种情况都是原来问题的递归问题。
代码1
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> res; vector<int> out;
combine(target, candidates, 0, out, res);
return res;
}
void combine(int target, vector<int>& candidates, int i, vector<int>& out, vector<vector<int>>& res) {
if (target == 0) {res.push_back(out); return;}
if (i >= candidates.size() || target < 0) return;
combine(target, candidates, i + 1, out, res);
out.push_back(candidates[i]);
combine(target - candidates[i], candidates, i, out, res);
out.pop_back();
}
};
代码2
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> res; vector<int> out;
combine(target, candidates, 0, out, res);
return res;
}
void combine(int target, vector<int>& candidates, int i, vector<int>& out, vector<vector<int>>& res) {
if (target == 0) {res.push_back(out); return;}
if (i >= candidates.size() || target < 0) return;
for (int j = i; j < candidates.size(); j++) {
out.push_back(candidates[j]);
combine(target - candidates[j], candidates, j, out, res);
out.pop_back();
}
}
};