[Leetcode] Unique Paths II

描述

Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

分析

这道题是 Unique Paths 的变形,区别在于这道题的路线中存在着障碍(用1表示),因此在计算总路线数的过程中,需要判断本身位置、同一列上一行位置以及同一行上一列位置是否有障碍。具体的方法还是动态规划。

代码

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& Grid) {
        int m = Grid.size(), n = Grid[0].size();
        vector<int> dp(n, 0); dp[0] = 1 - Grid[0][0];

        for (int i = 0, j = 1; j < n; j++)
            dp[j] = Grid[i][j] || Grid[i][j - 1] ?  0 : dp[j - 1];

        for (int i = 1; i < m; i++) {
            dp[0] = Grid[i][0] || Grid[i - 1][0] ?  0 : dp[0];
            for (int j = 1; j < n; j++) {
                if (Grid[i][j]) dp[j] = 0;
                else if (Grid[i - 1][j] && Grid[i][j - 1]) dp[j] = 0;
                else if (Grid[i - 1][j] && !Grid[i][j - 1]) dp[j] = dp[j - 1];
                else if (!Grid[i - 1][j] && !Grid[i][j - 1]) dp[j] += dp[j - 1];
            }
        }

        return dp[n - 1];
    }
};

相关问题

Unique Paths

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值