描述
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
分析
这道题是 Unique Paths 的变形,区别在于这道题的路线中存在着障碍(用1表示),因此在计算总路线数的过程中,需要判断本身位置、同一列上一行位置以及同一行上一列位置是否有障碍。具体的方法还是动态规划。
代码
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& Grid) {
int m = Grid.size(), n = Grid[0].size();
vector<int> dp(n, 0); dp[0] = 1 - Grid[0][0];
for (int i = 0, j = 1; j < n; j++)
dp[j] = Grid[i][j] || Grid[i][j - 1] ? 0 : dp[j - 1];
for (int i = 1; i < m; i++) {
dp[0] = Grid[i][0] || Grid[i - 1][0] ? 0 : dp[0];
for (int j = 1; j < n; j++) {
if (Grid[i][j]) dp[j] = 0;
else if (Grid[i - 1][j] && Grid[i][j - 1]) dp[j] = 0;
else if (Grid[i - 1][j] && !Grid[i][j - 1]) dp[j] = dp[j - 1];
else if (!Grid[i - 1][j] && !Grid[i][j - 1]) dp[j] += dp[j - 1];
}
}
return dp[n - 1];
}
};