[Leetcode] Product of Array Except Self

描述

Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Solve it without division and in O(n).

For example, given [1,2,3,4], return [24,12,8,6].

Follow up:

Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)

给定一个数组,将数组中每一个数换成除了它以外其他所有数的乘积,要求时间复杂度 O(n) 且不能使用除法。

分析1

要求不能使用除法,只能用乘法,一个可行的方法就是将该位置上左边所有数的乘积,乘上右边所有数的乘积。因此我们可以构造两个数组 fwd[n] 以及 bwd[n] ,其中 fwd[i] 表示 nums[i] 左边所有数的乘积, bwd[i] 表示 nums[i] 右边所有数的乘积。递推公式是:

fwd[i+1]=fwd[i]nums[i]
bwd[i1]=bwd[i]nums[i]

代码1

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        int n = nums.size();
        vector<int> fwd(n, 1), bwd(n, 1), res(n);

        for (int i = 0; i < n - 1; ++i) {
            fwd[i + 1] = fwd[i] * nums[i];
        }

        for (int i = n - 1; i > 0; --i) {
            bwd[i - 1] = bwd[i] * nums[i];
        }

        for (int i = 0; i < n; ++i) {
            res[i] = fwd[i] * bwd[i];
        }

        return res;
    }
};

分析2

下面的做法跟上面的做法在思路上是一样的,不过空间复杂度得到了减小。

代码2

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        vector<int> res(nums.size(),1);
        int left = 1, right = 1;

        for (int i = 0; i < nums.size(); i++) {
            res[i] *= left;
            left *= nums[i];
        }

        for (int i = nums.size() - 1; i >= 0; i--) {
            res[i] *= right;
            right *= nums[i];
        }

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值