时间序列分析.基本数学概念


本文主要介绍时间序列分析中会用到的一些数学知识。


1.均值、方差、协方差、相关系数

1.1 期望

1.1.1 期望的定义

X X X具有概率密度函数 f ( x ) f(x) f(x),并且令 ( X , Y ) (X,Y) (X,Y)对具有联合概率密度函数 f ( x , y ) f(x,y) f(x,y)
定义 X X X的期望值为: E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)={\int\limits_{-\infty}^\infty}xf(x)dx E(X)=xf(x)dx

1.1.2 期望的性质
  1. E ( a X + b Y + c ) = a E ( X ) + b E ( Y ) + c E(aX+bY+c) = aE(X)+bE(Y)+c E(aX+bY+c)=aE(X)+bE(Y)+c
  2. X X X Y Y Y相互独立时, E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

1.2 方差

1.2.1 方差的定义

随机变量 X X X的方差定义为: D ( X ) = E { [ X − E ( X ) ] 2 } D(X)=E\{[X-E(X)]^2\} D(X)=E{ [XE(X)]2},方差通常还记为 V a r ( X ) Var(X) Var(X) μ 2 \mu^2 μ2
X X X是离散型随机变量,则 D ( X ) = ∑ k = 1 ∞ [ x k − E ( x ) ] 2 p k D(X)=\sum_{k=1}^{\infty}[x_k-E(x)]^2p_k D(X)=k=1[xkE(x)]2pk.
X X X是连续型随机变量,则 D ( X ) = ∫ − ∞ ∞ [ x − E ( x ) ] 2 f ( x ) d x D(X)=\int_{-\infty}^{\infty}[x-E(x)]^2f(x)dx D(X)=[xE(x)]2f(x)dx

D ( X ) = E { [ X − E ( X ) ] 2 D(X)=E\{[X-E(X)]^2 D(X)=E{ [XE(X)]2
= E { X 2 − 2 X E ( X ) + [ E ( X ) ] 2 } =E\{X^2-2XE(X)+[E(X)]^2\} =E{ X22XE(X)+[E(X)]2}
= E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( x ) ] 2 =E(X^2)-2E(X)E(X)+[E(x)]^2 =E(X2)2E(X)E(X)+[E(x)]2
= E ( X 2 ) − [ E ( X ) ] 2 =E(X^2)-[E(X)]^2 =E(X2)[E(X)]2

1.2.2 方差的性质
  1. D ( a X + b ) = a 2 D ( X ) D(aX+b)=a^2D(X) D(aX+b)=a2D(X)
  2. X X X Y Y Y相互独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) D(X\pm Y) = D(X)+D(Y) D(X±Y)=D(X)+D(Y)
  3. X X X Y Y Y不独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X\pm Y)=D(X)+D(Y)\pm2Cov(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

1.3 协方差

1.3.1 协方差的定义

C o v ( X , Y ) = E { ( X − E ( X ) ) ( Y − E ( Y ) ) } = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E\{(X-E(X))(Y-E(Y))\}=E(XY)-E(X)E(Y) Cov(X,Y)=E{ (XE(X))(YE(Y))}=E(XY)E(X)E(Y)

1.3.2 协方差的性质
  1. C o v ( a + b X , c + d Y ) = b d C o v ( X , Y ) Cov(a+bX,c+dY)=bdCov(X,Y) Cov(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值