- 博客(10)
- 收藏
- 关注
原创 使用PCA进行人脸图像降维与识别:从理论到实现
在矩阵论中,特征向量表示矩阵变换的“方向”,特征值表示该方向上的“缩放比例”。对于协方差矩阵,其特征向量对应于数据的主要变化方向,而特征值的大小则代表了该方向的重要性。
2025-12-25 19:27:52
233
原创 SVM分类实战:数据可视化 并绘制决策边界
线性可分问题:线性SVM能有效找到最大间隔分类器非线性问题:通过核技巧,SVM可以在高维空间中找到线性决策边界可视化:决策边界的可视化帮助我们理解模型的工作原理支持向量:只有少数关键样本影响最终决策,模型具有稀疏性SVM在实际应用中表现优异,特别是在小到中型数据集、高维特征空间的分类问题上。
2025-12-11 20:14:38
335
原创 朴素贝叶斯分类器求好瓜概率并使用拉普拉斯防溢出
朴素贝叶斯分类器优点在于1. 算法简单高效2. 对小规模数据表现良好缺点是1.特征条件独立性假设过强2.先验概率的影响较大朴素贝叶斯是一个简单但强大的基础分类器,虽然在强独立性假设下显得"朴素",但在许多实际应用中表现优异。它特别适合作为基线模型,或者在对计算效率要求高的场景中使用。理解其优缺点有助于在实际项目中做出合适的选择。
2025-12-11 19:16:38
278
原创 决策树预剪枝实战
预剪枝是在决策树生成过程中,提前停止树的生长。max_depth:树的最大深度:节点分裂所需的最小样本数:叶节点所需的最小样本数预剪枝是决策树模型中简单却强大的技术。1.预剪枝能有效防止过拟合2.适度的剪枝提升模型泛化能力3.简单的模型往往表现更好。
2025-11-25 22:13:04
148
原创 生成决策树并测试决策树精度
是一种常用的机器学习算法,广泛应用于分类和回归问题。它通过树状结构表示决策过程,每个内部节点代表一个特征的测试,每个分支代表测试结果,每个叶节点代表一个类别或值。决策树的核心思想是递归地将数据集划分为更小的子集,直至满足停止条件。:衡量选择某一特征后数据集纯度的提升,适用于分类问题。:衡量数据集的不纯度,基尼指数越小,数据集越纯净。:用于回归问题,衡量预测值与真实值的差异。
2025-11-10 18:46:41
228
原创 用KNN算法实现对数据的分类(python)并画出ROC和PR曲线
该方法的思路非常简单直观:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。(4)对数据进行分类,分成训练集和测试集,取前80%为训练集,后20%为测试集,选取训练集的前20个数据进行分类并将分类的详细结果展示出来,确认无误后对剩余数据进行分类。KNN算法的核心思想是:如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。的原则,将测试样本点归入在K个点中占比最高的那一类。
2025-10-19 18:25:53
392
原创 Java面向对象、基本框架和常用工具类
—对象可以视为是一种奇特的变量,能够直接反应现实生活中的事物,例如人、花、草等。(突然想到刚刚学的《数据结构》的课中讲的数据对象,应该是同样的意思吧),每个对象都有各自不同的状态及行为特征。
2025-02-19 16:31:25
1793
原创 尝试使用虚拟机配置python3.8环境(失败)
发现无法配置,怀疑是在这个虚拟机上未安装anaconda(虽然我也不知道有没有关系),于是我打开了18.04版本的虚拟机,再次输入了该命令。被告诉未找到‘git’的命令,于是按照要求进行修改,先使用另一个命令安装好‘git’这个命令。然后我去万能的CSDN上进行搜索,发现可能是pip版本低,使用大佬给出的命令进行更新。根据系统给出的建议,我把命令中的“pip”修改为了“-m pip”,但是还是无法进行。升级完后,我再次输入命令,结果!打开后,在yolov5文件夹中进行后续命令。
2025-01-25 22:30:58
372
原创 从C语言到C++(基于C语言的基础,着重于学习C++与之不同的地方)
在C++中,预定义宏的概念是用内联函数来实现的,而内联函数本身也是一个真正的函数。内联函数具有普通函数的所有行为。首先 C++是能够兼容C语言的,C++继承了C语言高效,简洁,快速和可移植的传统。把客观事物封装成抽象的类【具有相同的数据和相同的操作的一组对象的集合】,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏。访问队首s.front():队尾s.back(): 获取长度s,size();s.substr(n)(这个指从第n个字符开始,其后面的字符全部存入所定义的变量中)
2024-12-10 22:15:38
1736
5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅