吴恩达机器学习作业(二)多变量线性回归( Size / Bedrooms / Prize 数据)

开发环境

Anaconda 4.9.2 / Python 3.6.12

任务

已知一个有关房屋的数据集,其中有两个变量(房子的大小和卧室的数量)和目标(房子的价格),现需分析该数据集。

程序分解

导入原始数据

代码

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
path =  'E:\Ana3\linear_2\ex1data2.txt'
data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
data2.head()
print(data2.head())#看前五行

结果
在这里插入图片描述

预处理之特征归一化

代码

data2 = (data2 - data2.mean()) / data2.std()
print(data2.head())#特征归一化之后的前五行数据

结果
在这里插入图片描述

计算代价函数

代码

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))#定义代价函数J
data2.insert(0, 'Ones', 1)
cols = data2.shape[1]#在训练集中添加一列,值为1,以便使用向量化的方案计算代价和梯度
X2 = data2.iloc[:,0:cols-1]#X2是所有行,去掉最后一列
y2 = data2.iloc[:,cols-1:cols]#y2是所有行,最后一列
print(X2.head())
print(y2.head())#head()是观察前5X2 = np.matrix(X2.values)
y2 = np.matrix(y2.values)
theta2 = np.matrix(np.array([0,0,0]))
print(computeCost(X2, y2, theta2))#计算初始代价函数的值 (theta初始值为0)

结果
①观察X2,y2的前五行:
在这里插入图片描述
②输出初始代价函数的值 (theta初始值为0):0.489(归一化值)
在这里插入图片描述

批量梯度下降算法( Batch gradient decent )

代码

def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))#初始化一个theta临时矩阵temp,维数(1, 2)
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)#初始化代价数组
    for i in range(iters):
        error = (X * theta.T) - y
        for j in range(parameters):
            term = np.multiply(error, X[:,j])
            temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term))#梯度下降法中theta的迭代公式
        theta = temp
        cost[i] = computeCost(X, y, theta)#更新theta后的代价值
    return theta, cost
alpha = 0.01
iters = 1000
g2, cost2 = gradientDescent(X2, y2, theta2, alpha, iters)
print(computeCost(X2, y2, g2))

结果
在这里插入图片描述

绘制代价-迭代次数曲线

代码

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost2, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()

结果
在这里插入图片描述

完整代码

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
path =  'E:\Ana3\linear_2\ex1data2.txt'
data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
data2.head()
print(data2.head())#看前五行
data2 = (data2 - data2.mean()) / data2.std()
print(data2.head())#特征归一化之后的前五行数据

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))#定义代价函数J
data2.insert(0, 'Ones', 1)
cols = data2.shape[1]#在训练集中添加一列,值为1,以便使用向量化的方案计算代价和梯度
X2 = data2.iloc[:,0:cols-1]#X2是所有行,去掉最后一列
y2 = data2.iloc[:,cols-1:cols]#y2是所有行,最后一列
print(X2.head())
print(y2.head())#head()是观察前5X2 = np.matrix(X2.values)
y2 = np.matrix(y2.values)
theta2 = np.matrix(np.array([0,0,0]))
print(computeCost(X2, y2, theta2))#计算初始代价函数的值 (theta初始值为0)

def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))#初始化一个theta临时矩阵temp,维数(1, 2)
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)#初始化代价数组
    for i in range(iters):
        error = (X * theta.T) - y
        for j in range(parameters):
            term = np.multiply(error, X[:,j])
            temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term))#梯度下降法中theta的迭代公式
        theta = temp
        cost[i] = computeCost(X, y, theta)#更新theta后的代价值
    return theta, cost
alpha = 0.01
iters = 1000
g2, cost2 = gradientDescent(X2, y2, theta2, alpha, iters)
print(computeCost(X2, y2, g2))

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost2, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值