多变量线性回归( Size / Bedrooms / Prize 数据)
开发环境
Anaconda 4.9.2 / Python 3.6.12
任务
已知一个有关房屋的数据集,其中有两个变量(房子的大小和卧室的数量)和目标(房子的价格),现需分析该数据集。
程序分解
导入原始数据
代码
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
path = 'E:\Ana3\linear_2\ex1data2.txt'
data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
data2.head()
print(data2.head())#看前五行
结果
预处理之特征归一化
代码
data2 = (data2 - data2.mean()) / data2.std()
print(data2.head())#特征归一化之后的前五行数据
结果
计算代价函数
代码
def computeCost(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))#定义代价函数J
data2.insert(0, 'Ones', 1)
cols = data2.shape[1]#在训练集中添加一列,值为1,以便使用向量化的方案计算代价和梯度
X2 = data2.iloc[:,0:cols-1]#X2是所有行,去掉最后一列
y2 = data2.iloc[:,cols-1:cols]#y2是所有行,最后一列
print(X2.head()