吴恩达机器学习作业(二)多变量线性回归( Size / Bedrooms / Prize 数据)

开发环境

Anaconda 4.9.2 / Python 3.6.12

任务

已知一个有关房屋的数据集,其中有两个变量(房子的大小和卧室的数量)和目标(房子的价格),现需分析该数据集。

程序分解

导入原始数据

代码

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
path =  'E:\Ana3\linear_2\ex1data2.txt'
data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
data2.head()
print(data2.head())#看前五行

结果
在这里插入图片描述

预处理之特征归一化

代码

data2 = (data2 - data2.mean()) / data2.std()
print(data2.head())#特征归一化之后的前五行数据

结果
在这里插入图片描述

计算代价函数

代码

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))#定义代价函数J
data2.insert(0, 'Ones', 1)
cols = data2.shape[1]#在训练集中添加一列,值为1,以便使用向量化的方案计算代价和梯度
X2 = data2.iloc[:,0:cols-1]#X2是所有行,去掉最后一列
y2 = data2.iloc[:,cols-1:cols]#y2是所有行,最后一列
print(X2.head()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值