1001. 害死人不偿命的(3n+1)猜想 (15)
卡拉兹(Callatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?
输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式:输出从n计算到1需要的步数。
输入样例:
3
输出样例:
5
思路:
1. 如果n不为1,那么进行判断
2.如果是偶数,除2,如果事奇数,得到(3*n + 1) 在除以2,以此循环。
3. 知道n = 1 为止
代码:
#include<stdio.h>
int main() {
// 首先输入一个数字,不大于1000
int a;
int b = 0;
scanf("%d", &a);
if(a <= 1000) {
while( a != 1) {
if(a % 2 == 0) {
a = a / 2;
b++;
}
else {
a = (3 * a + 1) / 2;
b++;
}
}
}
printf("%d", b);
return 0;
}
java代码:
import java.util.Scanner;
public class Main{
public static void main(String[ ] args) {
Scanner in = new Scanner(System.in);
int len = 0, n;
n = in.nextInt();
while (n != 1) {
if(n % 2 == 0) {
n = n / 2;
} else {
n = (n * 3 + 1) / 2;
}
len++;
}
System.out.println(len);
}
}