[PAT-乙级]B1001. 害死人不偿命的(3n+1)猜想

1001. 害死人不偿命的(3n+1)猜想 (15)

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:

3

输出样例:

5

思路:

1. 如果n不为1,那么进行判断

2.如果是偶数,除2,如果事奇数,得到(3*n + 1) 在除以2,以此循环。

3. 知道n = 1 为止

代码:

#include<stdio.h>

int main() {
    // 首先输入一个数字,不大于1000
    int a;
    int b = 0;
    scanf("%d", &a);
    if(a <= 1000) {
        while( a != 1) {
        if(a % 2 == 0) {
            a = a / 2;
            b++;
        }
         else {
            a = (3 * a + 1) / 2;
            b++;
        }        
        }
    }
    printf("%d", b);
     return 0;
}

java代码:

import java.util.Scanner;

public class Main{

    public static void main(String[ ] args) {
        Scanner in = new Scanner(System.in);
        int len = 0, n;
        n = in.nextInt();
        while (n != 1) {
            if(n % 2 == 0) {
                n = n / 2;
            } else {
                n = (n * 3 + 1) / 2;
            }
            len++;
        }
        System.out.println(len);
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值