Ch8. 向量代数与空间解析几何
8.1 向量代数
1.数量积 a ⋅ b a·b a⋅b
数量积 几何表示: a ⋅ b = ∣ a ∣ ∣ b ∣ cos α a·b=|a||b|\cosα a⋅b=∣a∣∣b∣cosα
数量积,又称点积(点乘)、内积 【点乘是一个数,叉乘是一个向量,混合积是一个数】
线性代数中: α ⋅ β = ( α , β ) = α T β = β T α α·β=(α,β)=α^Tβ=β^Tα α⋅β=(α,β)=αTβ=βTα = a 1 b 1 + a 2 b 2 + a 3 b 3 =a_1b_1+a_2b_2+a_3b_3 =a1b1+a2b2+a3b3(设α、β均为3维列向量)
2.向量积 a × b a×b a×b
1.几何表示: ∣ a × b ∣ = ∣ a ∣ × ∣ b ∣ sin α |a×b|=|a|×|b|\sinα ∣a×b∣=∣a∣×∣b∣sinα
2.代数表示:向量积(叉乘)得与两向量都垂直的向量 ( c ⃗ = a ⃗ × b ⃗ \vec{c}=\vec{a}×\vec{b} c=a×b,则 c ⃗ \vec{c} c 既垂直于 a ⃗ \vec{a} a 又垂直于 b ⃗ \vec{b} b )
a ⃗ × b ⃗ = ∣ i ⃗ j ⃗ k ⃗ a x a y a z b x b y b z ∣ \vec{a}×\vec{b}=\left|\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z\\ b_x & b_y & b_z \end{array}\right| a×b= iaxbxjaybykazbz
3.运算律: a × a = 0 a×a=0 a×a=0
4.几何应用:
(1)以a、b为邻边的平行四边形的面积:
S
=
∣
a
×
b
∣
S=|a×b|
S=∣a×b∣
(2)若平行或共线:若
∣
a
×
b
∣
=
0
|a×b|=0
∣a×b∣=0,则向量a、b平行或共线
向量积,又称叉乘
数量积a·b是一个数,向量积a×b是一个向量
a×b = -(b×a),向量积的方向用右手法则判定,a转到b与b转到a差一个负号。
3. 混合积 ( a b c ) (abc) (abc)
1.代数表示: ( a b c ) = ( a × b ) ⋅ c = ∣ a x a y a z b x b y b z c x c y c z ∣ (abc)=(a×b)·c=\left|\begin{array}{ccc} a_x & a_y &a_z\\ b_x & b_y &b_z\\ c_x & c_y &c_z\\ \end{array}\right| (abc)=(a×b)⋅c= axbxcxaybycyazbzcz
2.运算律:
由混合积代数表示的行列式可知,若三个向量中有任意两个是相同的,则混合积为0
混合积 ( a b c ) = ( a × b ) ⋅ c (abc)=(a×b)·c (abc)=(a×b)⋅c【先叉乘,再点乘】
数量积a·b是一个数,向量积a×b是一个向量,混合积(abc)也是一个数
轮换对称值不变,只换一个差负号。(因为是行列式只交换一行差一个负号)
例题1:24李林六(二)4. ①直线与直线的位置关系 ②混合积:共面
⇔
\Leftrightarrow
⇔ 混合积为0: (abc)=(a×b)·c=0
分析:
答案:B
4.方向余弦
向量的方向余弦,即 单位化: ( cos α , cos β , cos γ ) = n ⃗ ° (\cosα,\cosβ,\cosγ)=\vec{n}° (cosα,cosβ,cosγ)=n°
非零向量 n ⃗ \vec{n} n与三条坐标轴的夹角 α 、 β 、 γ α、β、γ α、β、γ 称为向量 n ⃗ \vec{n} n的方向角
设 n ⃗ = ( a , b , c ) ,则 cos α = a ∣ n ∣ , cos β = b ∣ n ∣ , cos γ = c ∣ n ∣ \vec{n}=(a,b,c),则\cosα=\dfrac{a}{|n|},\cosβ=\dfrac{b}{|n|},\cosγ=\dfrac{c}{|n|} n=(a,b,c),则cosα=∣n∣a,cosβ=∣n∣b,cosγ=∣n∣c
即 cos α = a a 2 + b 2 + c 2 , cos β = b a 2 + b 2 + c 2 , cos γ = c a 2 + b 2 + c 2 , \cosα=\dfrac{a}{\sqrt{a²+b²+c²}},\cosβ=\dfrac{b}{\sqrt{a²+b²+c²}},\cosγ=\dfrac{c}{\sqrt{a²+b²+c²}}, cosα=a2+b2+c2a,cosβ=a2+b2+c2b,cosγ=a2+b2+c2c,【方向余弦 = 法向量 法向量的模 \dfrac{法向量}{法向量的模} 法向量的模法向量】
显然, cos 2 α + cos 2 β + cos 2 γ = 1 \cos²α+\cos²β+\cos²γ=1 cos2α+cos2β+cos2γ=1
【 两向量共线,线性相关 三向量共面,线性相关】
5.投影
①向量a在向量b上的投影: P r j b a = ∣ a ∣ cos θ = a ⃗ ⋅ b ⃗ ∣ b ∣ Prj_ba=|a|\cosθ=\dfrac{\vec{a}·\vec{b}}{|b|} Prjba=∣a∣cosθ=∣b∣a⋅b
②向量b在向量a上的投影: P r j a b = ∣ b ∣ cos θ = a ⃗ ⋅ b ⃗ ∣ a ∣ Prj_ab=|b|\cosθ=\dfrac{\vec{a}·\vec{b}}{|a|} Prjab=∣b∣cosθ=∣a∣a⋅b
8.2 空间平面与直线
1.平面方程
设平面的法向量为 n ⃗ = { A , B , C } \vec{n}=\{A,B,C\} n={A,B,C}
(1)一般式: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
(2)点法式: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(x−x0)+B(y−y0)+C(z−z0)=0
(3)截距式: x a + y b + z c = 1 \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1 ax+by+cz=1
2.直线方程
(1)直线的交面式(一般式)方程
(2)直线的点向式(对称式)方程
(3)直线的参数式方程
尤其是,只给了两个空间点坐标 A、B,写出直线的 对称式 或 参数式方程
例题3:24李林六(五)13. 直线AB的参数式方程
分析:
s
⃗
=
A
B
→
=
(
1
,
2
,
1
)
\vec{s}=\overrightarrow{AB}=(1,2,1)
s=AB=(1,2,1)
答案:5
(4)平面束方程 (由直线的交面式得到)
若直线L由方程组
{
A
1
x
+
B
1
y
+
C
1
z
+
D
1
=
0
A
2
x
+
B
2
y
+
C
2
z
+
D
2
=
0
\left\{\begin{aligned} A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0 \end{aligned}\right.
{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 所确定,且
A
1
、
B
1
、
C
1
与
A
2
、
B
2
、
C
2
A_1、B_1、C_1与A_2、B_2、C_2
A1、B1、C1与A2、B2、C2不成比例,则可得平面束方程:
A
1
x
+
B
1
y
+
C
1
z
+
D
1
+
λ
(
A
2
x
+
B
2
y
+
C
2
z
+
D
2
)
=
0
A_1x+B_1y+C_1z+D_1+λ(A_2x+B_2y+C_2z+D_2)=0
A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0
表示通过直线L的所有平面全体,除平面
A
2
x
+
B
2
y
+
C
2
z
+
D
2
=
0
A_2x+B_2y+C_2z+D_2=0
A2x+B2y+C2z+D2=0
例题1:同济下P35例7,求交面式直线在某平面上的投影直线的方程
解题:
①设出平面束方程,λ为待定系数
②既为投影,则两平面垂直,平面法向量
n
1
⃗
⋅
n
2
⃗
=
0
\vec{n_1}·\vec{n_2}=0
n1⋅n2=0,解出λ,确定垂直平面
③投影直线为该垂直平面和目标平面的交面式
例题2:660P203T593
考察:平面束方程,恰好缺少λ后的那个平面
若在解λ的过程中发现矛盾(例如解得 7=0),则说明要求的垂直平面(投影平面) 恰为 λ后的那个平面,平面束缺少该平面
3.平面与直线的位置关系 (看 n ⃗ \vec{n} n 和 s ⃗ \vec{s} s)
1.平行、垂直、夹角
①直线与平面平行:
s
⃗
⊥
n
⃗
\vec{s}⊥\vec{n}
s⊥n
②直线与平面垂直:
s
⃗
/
/
n
⃗
\vec{s}//\vec{n}
s//n
③直线与平面的夹角:
直线的方向向量
s
⃗
\vec{s}
s与直线在平面上的投影的夹角
α
α
α:
α
=
π
2
−
β
α=\dfrac{π}{2}-β
α=2π−β。【
β
β
β为直线方向向量
s
⃗
\vec{s}
s与平面法线向量
n
⃗
\vec{n}
n的夹角。】
2.交面式直线的方向向量
设两交面的法向量分别是
n
1
⃗
\vec{n_1}
n1和
n
2
⃗
\vec{n_2}
n2,则
s
⃗
=
n
1
⃗
×
n
2
⃗
\vec{s}=\vec{n_1}×\vec{n_2}
s=n1×n2
(1)直线与直线的位置关系
4.点到平面的距离
点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 的距离公式: d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A²+B²+C²}} d=A2+B2+C2∣Ax0+By0+Cz0+D∣
直线到直线的距离 (异面直线的距离)
直线L1到直线L2的距离:
①用平面束方程,求过直线L2且平行于直线L1的平面π
②直线L1上一点到平面π的距离,即为直线L1到直线L2的距离
5.点到直线的距离
1.平面:
2.空间:
已知一点
(
x
0
,
y
0
,
z
0
)
(x_0,y_0,z_0)
(x0,y0,z0),直线L的方向向量
s
⃗
=
(
l
,
m
,
n
)
\vec{s}=(l,m,n)
s=(l,m,n),直线上一点
(
x
1
,
y
1
,
z
1
)
(x_1,y_1,z_1)
(x1,y1,z1)。求该点到直线的距离d:
平行四边形的面积 = ∣ A B ⃗ × s ⃗ ∣ = ∣ s ⃗ ∣ h |\vec{AB}×\vec{s}|=|\vec{s}|h ∣AB×s∣=∣s∣h
∴ 点到直线的距离 d = h = ∣ A B ‾ × s ⃗ ∣ ∣ s ⃗ ∣ = ∣ { x 1 − x 0 , y 1 − y 0 , z 1 − z 0 } × { l , m , n } ∣ l 2 + m 2 + n 2 d=h=\dfrac{|\overline{AB}×\vec{s}|}{|\vec{s}|}=\dfrac{|\{x_1-x_0,y_1-y_0,z_1-z_0\}×\{l,m,n\}|}{\sqrt{l^2+m^2+n^2}} d=h=∣s∣∣AB×s∣=l2+m2+n2∣{x1−x0,y1−y0,z1−z0}×{l,m,n}∣
例题1:06年4. 点到平面的距离
分析: d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 = 3 × 2 + 4 × 1 3 2 + 4 2 + 5 2 = 10 50 = 10 5 2 = 2 d=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A²+B²+C²}}=\dfrac{3×2+4×1}{\sqrt{3²+4²+5²}}=\dfrac{10}{\sqrt{50}}=\dfrac{10}{5\sqrt{2}}=\sqrt{2} d=A2+B2+C2∣Ax0+By0+Cz0+D∣=32+42+523×2+4×1=5010=5210=2
答案: 2 \sqrt{2} 2
例题2:点法式求平面方程
6.空间直线与向量的综合应用 (高数+线代)
例题1:20年6. 直线的点向式方程→直线的参数方程 + 线性表示
分析:
答案:C
例题2:660第640
例题3:880线性方程组综合选择1
8.3 曲面与空间曲线
1.曲面方程
一般式: F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 或 z = f ( x , y ) z=f(x,y) z=f(x,y)
2.空间曲线
(1)参数式
{ x = x ( t ) y = y ( t ) z = z ( t ) \left\{\begin{aligned} x & = x(t) \\ y & = y(t) \\ z & = z(t) \end{aligned}\right. ⎩ ⎨ ⎧xyz=x(t)=y(t)=z(t)
(2)一般式 (交面式)
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \left\{\begin{aligned} F(x,y,z) & = 0 \\ G(x,y,z) & = 0 \end{aligned}\right. {F(x,y,z)G(x,y,z)=0=0
3.常见曲面
(1)旋转曲面
1.绕谁转,谁不动。另一个变成 ±根号下的平方和。
2.空间曲线
{
F
(
x
,
y
,
z
)
=
0
G
(
x
,
y
,
z
)
=
0
\left\{\begin{aligned} F(x,y,z) & = 0 \\ G(x,y,z) & = 0 \end{aligned}\right.
{F(x,y,z)G(x,y,z)=0=0 绕z轴旋转所得旋转曲面方程的求法:
先将曲面写成
{
x
=
x
(
z
)
y
=
y
(
z
)
\left\{\begin{aligned} x & = x(z) \\ y & = y(z) \end{aligned}\right.
{xy=x(z)=y(z) 的形式,从而所求旋转曲面的方程为
x
2
+
y
2
=
x
2
(
z
)
+
y
2
(
z
)
x^2+y^2=x^2(z)+y^2(z)
x2+y2=x2(z)+y2(z)
3.具体步骤:给出空间两点A、B,求其连线绕z轴旋转所得的旋转曲面:
①求出直线AB的方向向量
A
B
‾
\overline{AB}
AB
②构造直线的点向式方程,得到x与z、y与z的关系:
x
=
x
(
z
)
,
y
=
y
(
z
)
x=x(z),y=y(z)
x=x(z),y=y(z)
③则绕z轴的旋转曲面的方程为:
x
2
+
y
2
=
x
2
(
z
)
+
y
2
(
z
)
x^2+y^2=x^2(z)+y^2(z)
x2+y2=x2(z)+y2(z)
例题1:13年19. 旋转曲面的求法、重积分的应用:形心坐标
分析:
(1)求绕z轴的旋转曲面:
空间曲线
{
F
(
x
,
y
,
z
)
=
0
G
(
x
,
y
,
z
)
=
0
\left\{\begin{aligned} F(x,y,z) & = 0 \\ G(x,y,z) & = 0 \end{aligned}\right.
{F(x,y,z)G(x,y,z)=0=0 绕z轴旋转所得旋转曲面方程的求法:
先将曲面写成
{
x
=
x
(
z
)
y
=
y
(
z
)
\left\{\begin{aligned} x & = x(z) \\ y & = y(z) \end{aligned}\right.
{xy=x(z)=y(z) 的形式,从而所求旋转曲面的方程为
x
2
+
y
2
=
x
2
(
z
)
+
y
2
(
z
)
x^2+y^2=x^2(z)+y^2(z)
x2+y2=x2(z)+y2(z)
(2)求形心坐标
代入
x
=
−
x
,
y
=
−
y
,
z
=
−
z
x=-x,y=-y,z=-z
x=−x,y=−y,z=−z,代入哪个若方程不变,则哪个形心坐标就是0
如本题,旋转曲面方程为
x
2
+
y
2
=
2
z
2
−
2
z
+
1
x^2+y^2=2z^2-2z+1
x2+y2=2z2−2z+1,代入
x
=
−
x
,
y
=
−
y
x=-x,y=-y
x=−x,y=−y方程不变,则由对称性得
x
ˉ
=
0
,
y
ˉ
=
0
\bar{x}=0,\bar{y}=0
xˉ=0,yˉ=0。只需求
z
ˉ
=
∭
z
d
v
∭
1
d
v
\bar{z}=\dfrac{\iiint zdv}{\iiint 1dv}
zˉ=∭1dv∭zdv
答案:
例题2:24李林六(一)20. 旋转曲面
答案:
例题3:求曲线绕指定轴旋转产生的旋转面方程
分析:绕谁转,谁不动。另一个变成 ±根号下的平方和。
如:
{
f
(
x
,
y
)
=
1
z
=
0
\left\{\begin{aligned} f(x,y) & = 1 \\ z & = 0 \end{aligned}\right.
{f(x,y)z=1=0 绕x轴转,得
f
(
x
,
±
y
2
+
z
2
)
f(x,±\sqrt{y^2+z^2})
f(x,±y2+z2);绕y轴转,得
f
(
±
x
2
+
z
2
,
y
)
f(±\sqrt{x^2+z^2},y)
f(±x2+z2,y)
答案:
(2)柱面
1.圆柱面 / 椭圆柱面
①圆柱面: x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2
②椭圆柱面: x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1 (由圆形、椭圆形拔到z轴上)
2.双曲柱面
双曲柱面: x 2 a 2 − y 2 b 2 = 1 \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1 a2x2−b2y2=1(由双曲线拔到z轴上)
3.抛物柱面
抛物柱面: x 2 = a y x^2=ay x2=ay (由抛物线拔到z轴上)
举例:
y
2
=
2
x
y^2=2x
y2=2x
例题1:求柱面
分析:联立方程消去z,得柱面H(x,y)=0
(3)二次曲面
与平面解析几何中规定的二次曲线类似,我们把三元二次方程F(x,y,z)=0所表示的曲面称为二次曲面,把平面称为一次曲面
1.球面 / 椭球面
①球面: x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 x2+y2+z2=1
上半球面: z = 1 − x 2 − y 2 z=\sqrt{1-x^2-y^2} z=1−x2−y2 (x的奇函数,y的奇函数,积分为0)
②椭球面: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
2.圆锥面 / 椭圆锥面
①圆锥面: z 2 = x 2 + y 2 z^2=x^2+y^2 z2=x2+y2
上半圆锥面: z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2
②椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=z^2 a2x2+b2y2=z2
3.旋转抛物面 / 椭圆抛物面
①旋转抛物面: z = x 2 + y 2 z=x^2+y^2 z=x2+y2
②椭圆抛物面: x 2 a 2 + y 2 b 2 = z \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=z a2x2+b2y2=z
4.单叶双曲面
单叶双曲面(单负),花瓶,双曲线绕y轴旋转得到
x 2 + y 2 − z 2 = 1 x^2+y^2-z^2=1 x2+y2−z2=1
x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=1 a2x2+b2y2−c2z2=1
单叶双曲面和双叶双曲面都是由双曲线x²-y²=1旋转得来。单叶是绕(双曲线之间的那根轴)y轴旋转,双叶是绕(贯穿两根双曲线的那根轴)x轴旋转。
5.双叶双曲面
双叶双曲面 (双负),两个碗,,双曲线绕x轴旋转得到
x 2 − y 2 − z 2 = 1 x^2-y^2-z^2=1 x2−y2−z2=1
x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=1 a2x2−b2y2−c2z2=1
6.双曲抛物面 (马鞍面)
双曲抛物面: x 2 a 2 − y 2 b 2 = z \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=z a2x2−b2y2=z
举例: z = x 2 − y 2 z=x^2-y^2 z=x2−y2
例题1:16年06. 二次型与二次曲面
分析:
答案:B
(4)空间曲线的投影:投影曲线
①令
F
(
x
,
y
,
z
)
=
G
(
x
,
y
,
z
)
F(x,y,z)=G(x,y,z)
F(x,y,z)=G(x,y,z),消去z,得H(x,y)=0
②联立
z
=
0
z=0
z=0
即为投影曲线的方程
例题1:17年19.(1)
分析:
(Ⅰ)联立
z
=
x
2
+
y
2
z=\sqrt{x^2+y^2}
z=x2+y2,
z
2
=
2
x
z^2=2x
z2=2x,消z得
x
2
+
y
2
=
2
x
x^2+y^2=2x
x2+y2=2x ,再联立
z
=
0
z=0
z=0,
即投影曲线为 { x 2 + y 2 = 2 x z = 0 \left\{\begin{aligned} x^2+y^2 & = 2x \\ z & = 0 \end{aligned}\right. {x2+y2z=2x=0
例题2:880 P25 二、(7)(10)
例题3:求空间曲线在平面上的投影曲线方程