I.理论部分
1)概念相关:
集中趋势:均值,中位数,众数,分位数
离中趋势:标准差,方差
数据分布:偏度系数,峰度系数,正态分布,三大分布
抽样理论:抽样误差(确定样本量)、抽样精度
2)数据分类
定类(类别):根据事物离散,无差别属性进行的分类。性别,民族
定序(顺序):可以界定数据的大小,但不能测定差值。低中高
定距(间隔):可以界定数据大小的同时测定差值,但无绝对零点(乘除比率等无意义)。温度
定比(比率):可以界定数据大小,可以测定差值,有绝对零点(乘除比率有意义)。身高,体重
3)单属性分析:
1.异常值分析
连续异常值:[下分位数-K*(Q3-Q1),上分位数+K*(Q3-Q1)]
离散异常值:空值
知识异常值:不符合常理的值
2.对比分析
比较什么?
绝对数比较,
相对数比较,
结构相对数:部分与总体
比例相对数:总体内不同部分的数值进行比较
比较相对数:同一时空下相似或者同质的数值进行的比较
动态相对数:增速等
强度相对数:性质不同但有相互联系属性相互的联合,平均
怎么比?
时间维度:同比,环比
空间维度:
经验与计划:进度与排期的比较
3.结构分析
静态:分析总体的组成(总体的结构)
动态:分析结构变化的趋势
4.分布分析
直接获得的概率分布
判断是不是正态分布
极大似然(相似程度的衡量)
II.编码实现
1)准备工作
pip install pandas #cmd中利用pip安装所需要的包pandas,numpy,scipy
ipmort pandas as pd #IDE中调用所需的包,包括了pandas,scipy.stats
df = pd.read_csv(" 文件路径") #数据的选取
pandas库显示不完全的问题使用下列代码:
pd.set_option('display.max_columns', None) #显示所有列
pd.set_option('displa
[Python数据分析] 2-单因子探索分析与可视化
最新推荐文章于 2022-04-15 11:41:02 发布

最低0.47元/天 解锁文章
830

被折叠的 条评论
为什么被折叠?



