[Python数据分析] 2-单因子探索分析与可视化

I.理论部分
 
1)概念相关:
集中趋势:均值,中位数,众数,分位数
离中趋势:标准差,方差
数据分布:偏度系数,峰度系数,正态分布,三大分布
抽样理论:抽样误差(确定样本量)、抽样精度
 
2)数据分类
定类(类别):根据事物离散,无差别属性进行的分类。性别,民族
定序(顺序):可以界定数据的大小,但不能测定差值。低中高
定距(间隔):可以界定数据大小的同时测定差值,但无绝对零点(乘除比率等无意义)。温度
定比(比率):可以界定数据大小,可以测定差值,有绝对零点(乘除比率有意义)。身高,体重
 
3)单属性分析:
1.异常值分析
    连续异常值:[下分位数-K*(Q3-Q1),上分位数+K*(Q3-Q1)]
    离散异常值:空值
    知识异常值:不符合常理的值
2.对比分析
    比较什么?
        绝对数比较,
        相对数比较,
        结构相对数:部分与总体
        比例相对数:总体内不同部分的数值进行比较
        比较相对数:同一时空下相似或者同质的数值进行的比较
        动态相对数:增速等
        强度相对数:性质不同但有相互联系属性相互的联合,平均
    怎么比?
        时间维度:同比,环比
        空间维度:
        经验与计划:进度与排期的比较
3.结构分析
    静态:分析总体的组成(总体的结构)
    动态:分析结构变化的趋势
4.分布分析
    直接获得的概率分布
    判断是不是正态分布
    极大似然(相似程度的衡量)
 
 
II.编码实现
 
1)准备工作
pip install pandas  #cmd中利用pip安装所需要的包pandas,numpy,scipy
ipmort pandas as pd  #IDE中调用所需的包,包括了pandas,scipy.stats
df = pd.read_csv(" 文件路径")  #数据的选取
 
pandas库显示不完全的问题使用下列代码:
pd.set_option('display.max_columns', None)  #显示所有列
pd.set_option('displa
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值