#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
## 读取数据
df = pd.read_csv("./HR.csv", header=0)
# 查看数据结构
summary = df.describe()
# 求均值
row_mean = df.mean(axis=1)
col_mean = df.mean()
# 选择数据
## 列
print(df["satisfaction_level"].head())
print(df[0:3])
## 标签
print(df.loc[0:3])
print(df.loc[0, ["satisfaction_level"]])
### 1
### 异常值分析
### 空值处理
sl_l = df["satisfaction_level"]
df[df['satisfaction_level'].isnull()]
#print(sl_l.isnull())
print(sl_l.isnull().sum())
print(sl_l[sl_l.isnull()])
## 对空值的填充
#print(sl_l.fillna(value=5))
## 对空值的丢弃
#print(sl_l.dropna(how="any"))
sl_l = sl_l.dropna(how="any")
### 2
### 数据过大、过小异常处理
le_s = df['last_evaluation']
le_s[le_s.isnull()]
le_s.isnull().sum()
## 偏度
le_s.skew()
## 峰度
le_s.kurt()
## 连续异常值处理方式(取四分位上下界)
#(1) le_s = le_s[le_s <= 1]
q_low = le_s.q
python - 单因子分析
最新推荐文章于 2024-08-20 11:45:32 发布
本文主要探讨如何使用Python进行单因子分析,包括数据预处理、因子分析计算以及结果解释,帮助读者理解并应用这一统计方法。
摘要由CSDN通过智能技术生成