bzoj 2431 简单dp/递推

题意:对于一个1~n的全排列,逆序对数为k的排列有几个

对于一个已经排好的1~i-1的排列,我们插入数i,可以贡献[0,i-1]个逆序对

所以第1~i的逆序对为m的排列可以由1~i-1的逆序对为[m-i+1,m]的排列插入数i形成

令f[i,j]表示1~i的全排列中逆序对数为j的排列总数

得出关系(方程):f[i,j]=sigma(f[i-1,j-k]) (0<=k<=i-1)

时间复杂度为O(n^3)

然后很显然f[i,j]是由f[i-1]的一段连续的区间和得来,那么我们对f[i-1,j]维护一个前缀和sum[j]即可优化为O(n^2)

const
        mo=10000;
var
        f               :array[0..1010,0..1010] of longint;
        n,m             :longint;
        i,j             :longint;
        sum             :array[-1..1010] of longint;
function max(a,b:longint):longint;
begin
   if a<b then exit(b) else exit(a);
end;

begin
   read(n,m);
   for i:=1 to n do f[i,0]:=1;
   for i:=2 to n do
   begin
      for j:=0 to m do sum[j]:=sum[j-1]+f[i-1,j];
      for j:=1 to m do f[i,j]:=(sum[j]-sum[max(-1,j-i)]+mo) mod mo;
   end;
   writeln(f[n,m]);
end.
——by Eirlys

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值