bzoj 1679 [Usaco2005 Jan]Moo Volume 牛的呼声

题目: 约翰的邻居鲍勃控告约翰家的牛们太会叫. 约翰的N(1≤N≤10000)只牛在一维的草场上的不同地点吃着草.她们都是些爱说闲话的奶牛,每一只同时与其他N-1只牛聊着天.一个对话的进行,需要两只牛都按照和她们间距离等大的音量吼叫,因此草场上存在着N(N-1)/2个声音.  请计算这些音量的和

显然无脑暴力O(n^2)是过不去的

但是显然,任意两个牛a和b之间的距离dis对答案的贡献为  :dis*a及a左边的牛的个数*b及b右面的牛的个数*2

所以我们只需要排个序即可

排序后: ans=2*sigma(a[i+1]-a[i])*i*(n-i)    (1<=i<=n-1)

var
        n               :longint;
        i               :longint;
        a               :array[0..10010] of longint;
        ans             :int64;

procedure sort(l,r:longint);
var
        i,j,x,y:longint;
begin
   i:=l; j:=r; x:=a[(l+r)>>1];
   while (i<=j) do
   begin
      while a[i]<x do inc(i);
      while a[j]>x do dec(j);
      if (i<=j) then
      begin
         y:=a[i]; a[i]:=a[j]; a[j]:=y;
         inc(i); dec(j);
      end;
   end;
   if i<r then sort(i,r);
   if j>l then sort(l,j);
end;

begin
   read(n);
   for i:=1 to n do read(a[i]);
   sort(1,n);
   ans:=0;
   for i:=1 to n-1 do inc(ans,int64(a[i+1]-a[i])*int64(i)*int64(n-i));
   writeln(ans*int64(2));
end.
——by Eirlys



好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值