含可再生能源的配电网最佳空调负荷优化控制

本文介绍了一种针对配电网的空调负荷优化控制方法,考虑了可再生能源的不确定性。通过滚动水平优化(RHO)策略实时调整,结合新颖的两参数热模型保证热舒适性,采用MILP方法调度空调负荷以降低总运行成本。代码可在[相关链接]获取。
摘要由CSDN通过智能技术生成

含可再生能源的配电网最佳空调负荷优化控制
该程序复现《Optimal air-conditioning 
load control in distribution network with intermittent renewables》,中文题目(翻译)为《含可再生能源的配电网最佳空调负荷优化控制》,实现内容:为了减轻包括风力发电、环境温度变化和电力零售价格在内的随机变量的不确定性,采用滚动水平优化(RHO)策略来连续更新实时信息并进入控制窗口。
此外,为了确保客户的热舒适性,引入了一种新颖的两参数热模型来更精确地计算室内温度变化,保证用户舒适度,以系统总运行成本最低为目标,采用基于MILP(混合整数线性规划)的方法来调度可中断的空调负荷,从而实现最佳调度效果。
两参数模型:
房屋的热过程由两个部分组成。
一个组成部分是房屋内部的热质量,另一个是具有显着不同的热容量的墙壁的热质量。
考虑到墙壁的热容量,房屋的室内空气温度变化可能会显著不同。
由于热模型的复杂性会对冷却能量的计算精度产生重大影响,因此该模型能够虽然复杂性增加,但是准确性也有效提升。
RHO策略:
RHO的主要程序如下。
1)在第一个时间步,基于日前的预测数据确定包括电价,环境温度和风能输出在内的参数。
MILP模型会根据最低运营成本目标计算并生成一组参数(例如Tr和Tw)。
2)在下一个时间步,基于更新的输入参数(包括实时价格(RTP),新近预测的环境温度,更新的未来风能输出,前一步生成的数据Tr等),使用MILP模型优化成本函数,并为下一个控制窗口生成一组新的参数。
3)在每个时间步,向前移动控制窗口,重复上述过程,直到完成计划范围的最后一个时间步。


相关代码,程序地址:http://imgcs.cn/lanzoun/743797952079.html
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值