HDU1115 Lifting the Stone

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Elemmir/article/details/51559102

就是给了一个密度均匀的多边形面,求它的重心坐标。
三角形的重心我会求!就是顶点坐标的算术平均数。
一堆有质量的点的重心我会求!就是坐标加质量为权的平均数。
所以多边形重心我会求。
问:凹下去的怎么办?
答:凹下去就变成负的了。

#include<bits/stdc++.h>
using namespace std;
struct point {
    double x,y;
    point(){}
    point(double _x,double _y):x(_x),y(_y){}
    point operator - (const point &a) {return point(x-a.x,y-a.y);}
};
istream& operator >> (istream& in,point &p) {
    cin>>p.x>>p.y;
    return in;
}
int T,n;
double cross(point a,point b) { return a.x*b.y-a.y*b.x; }
double Area(point a,point b,point c) { return cross(b-a,c-a); }
int main() {
    for(scanf("%d",&T);T;T-- ) {
        double sum_x = 0, sum_y = 0, sum_s = 0;
        point p1,p2,p3;
        scanf("%d",&n);
        cin>>p1;
        cin>>p2;
        for(int i = 2; i < n; i++) {
            cin>>p3;
            double S = Area(p1,p2,p3);
            sum_s += S;
            sum_x += (p1.x+p2.x+p3.x) * S;
            sum_y += (p1.y+p2.y+p3.y) * S;
            p2 = p3;
        }
        printf("%.2lf %.2lf\n",sum_x/sum_s/3,sum_y/sum_s/3);
    }
}

嗯,这篇题解完了。但是脑洞又来了,我们来愉悦地偏题。
有这样一个多边形板,我们希望它能围绕一条与它不相交的直线不停地旋转。于是我们隐约看到了一个旋转体。我们很好奇它的体积是多少,于是决定算它,然后就愉悦地拿出了古尔亭定理。

阅读更多

Lifting the Stone

06-14

Problem DescriptionnThere are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. n nnInputnThe input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. n nnOutputnPrint exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. n nnSample Inputn2n4n5 0n0 5n-5 0n0 -5n4n1 1n11 1n11 11n1 11n nnSample Outputn0.00 0.00n6.00 6.00

没有更多推荐了,返回首页