二叉树

1.定义

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。

  • 二叉树的第i层至多有2^(i-1)个结点;
  • 深度为k的二叉树至多有2^(k-1)个结点;
  • 对任何一棵二叉树T,如果其终端结点数为y,度为2的结点数为x,则y=x+1。

2.完全二叉树

定义:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树

  • 具有n个结点的完全二叉树的深度为log2(n+1);
  • 有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
  • 若I为结点编号则 如果I>1,则其父结点的编号为I/2;

如果2I<=N,则其左儿子(即左子树的根结点)的编号为2I;若2I>N,则无左儿子;

如果2I+1<=N,则其右儿子的结点编号为2I+1;若2I+1>N,则无右儿子。

  • N个节点构成(2n)!/n!(n-1)!种结构

3.哈夫曼树

定义:哈夫曼树─即最优二叉树,带权路径长度最小的二叉树。

创建:选取权重最小的两个节点构成树,并把这另个节点从原来的树林中删除,把他们的和添加至树林中,重复操作此步骤。

节点编码:节点左边为0,右边为1;

例如计算aaaabbcd的哈夫曼编码长度

首先创建哈夫曼树,树林{a:4,b:2,c:1,d:1}

选取c,d构成新树,新树林为{a:4,b:2,cd:2}

选取b,cd 构成新树,新树林为{a:4,bcd:4}

最终的哈夫曼树为:

                   8

              4      a:4

        2        b:2

 c:1         d:1

节点编码:

a:1;

b:01;

c:000;

d:001;

所以字符串aaaabbcd的哈夫曼编码长度为:4*1+2*2+3*1+3*1=14

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值