1.定义
二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。
- 二叉树的第i层至多有2^(i-1)个结点;
- 深度为k的二叉树至多有2^(k-1)个结点;
- 对任何一棵二叉树T,如果其终端结点数为y,度为2的结点数为x,则y=x+1。
2.完全二叉树
定义:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树
- 具有n个结点的完全二叉树的深度为log2(n+1);
- 有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
- 若I为结点编号则 如果I>1,则其父结点的编号为I/2;
如果2I<=N,则其左儿子(即左子树的根结点)的编号为2I;若2I>N,则无左儿子;
如果2I+1<=N,则其右儿子的结点编号为2I+1;若2I+1>N,则无右儿子。
- N个节点构成(2n)!/n!(n-1)!种结构
3.哈夫曼树
定义:哈夫曼树─即最优二叉树,带权路径长度最小的二叉树。
创建:选取权重最小的两个节点构成树,并把这另个节点从原来的树林中删除,把他们的和添加至树林中,重复操作此步骤。
节点编码:节点左边为0,右边为1;
例如计算aaaabbcd的哈夫曼编码长度
首先创建哈夫曼树,树林{a:4,b:2,c:1,d:1}
选取c,d构成新树,新树林为{a:4,b:2,cd:2}
选取b,cd 构成新树,新树林为{a:4,bcd:4}
最终的哈夫曼树为:
8
4 a:4
2 b:2
c:1 d:1
节点编码:
a:1;
b:01;
c:000;
d:001;
所以字符串aaaabbcd的哈夫曼编码长度为:4*1+2*2+3*1+3*1=14