Description
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
解题思路
递归回溯。需要添加一个辅助函数用来查找所有可能,在辅助函数中,每次都只有两种可能
- 加左括号
(
- 加右括号
)
因为要满足括号匹配,所以要加一个判断。可以加右括号的必要条件是当前需要的右括号 )
的个数大于左括号 (
的个数。
可以用反证法证明一下。
假如不满足这个条件,则右括号 )
的个数小于等于左括号 (
的个数,那么在此之前的括号中,必定存在至少一个右括号 )
没有对应的左括号 (
,出现类似())
或者)(
的结果,不满足题意。
所以,在进行下一轮的递归前,要判断左右括号个数的多少。
Code
class Solution {
public:
void base(vector<string>& ans, int l, int r, string now) {
if (l == 0 && r == 0) {
ans.push_back(now);
return;
}
if (l > 0) base(ans, l - 1, r, now + "(");
if (r > l) base(ans, l, r - 1, now + ")");
}
vector<string> generateParenthesis(int n) {
vector<string> ans;
base(ans, n, n, "");
return ans;
}
};