【动态规划】分组背包问题

文章介绍了分组背包问题,这是一种扩展的背包问题,每个物品属于不同组,每组只能选一个。使用二维数组存储物品的权重和体积,状态表示为前i组中物品总体积不超过j时的最大权重和。通过状态转移方程动态规划求解,找到最优解。代码示例展示了问题的解决过程。
摘要由CSDN通过智能技术生成

分组背包问题

  1. 分组背包问题相当于在背包问题的逻辑之上,将物品分成不同的组,每一组当中各个物品有拥有不同的权重与体积,对于每一组只能选出一个物品放到背包里面
  2. 在分组背包问题当中,存储物品的权重与体积的时候必须用二维数组,表示是哪一组的且在该组当中的第几个物品的体积或权重,并且创建一个数组s,用来表示每一组当中物品的个数。
int v[N][N];
int w[N][N];
int s[N];
  1. 在分组背包问题当中的状态表示的集合f(i,j ),表示在只选前 i 组的情况之下,并且物品总体积小于等于j,在该状态之下的所有选法当中权重和的最大值
    在这里插入图片描述
  2. 然后再进行状态计算的时候,可以得出一个状态转移方程如下,划分集合的依据就在于:对于第i组到底选择他这个组当中的第几个物品,也可以不选
    在这里插入图片描述
for (int i=1;i<=n;i++)
{
    for (int j=0;j<=m;j++)
    {
        for (int k=0;k<=s[i];k++)
        {
            if (j-v[i][k]>=0)
            {
                f[i][j]=MAX(f[i][j],f[i-1][j-v[i][k]]+w[i][k]);
            }
        }
    }
}
printf("%d\n",f[n][m]);

分组背包问题

来源:AcWing
luck
在这里插入图片描述

#include <stdio.h>
#define MAX(a,b) ((a)>(b)?(a):(b))
#define N 110
int n,m;
int v[N][N];
int w[N][N];
int s[N];
int f[N][N];
int main()
{
    scanf("%d %d",&n,&m);
    for (int i=1;i<=n;i++)
    {
        scanf("%d",&s[i]);
        for (int j=1;j<=s[i];j++)
        {
            scanf("%d %d",&v[i][j],&w[i][j]);
        }
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=0;j<=m;j++)
        {
            for (int k=0;k<=s[i];k++)
            {
                if (j-v[i][k]>=0)
                {
                    f[i][j]=MAX(f[i][j],f[i-1][j-v[i][k]]+w[i][k]);
                }
            }
        }
    }
    printf("%d\n",f[n][m]);
    return 0;
}

关于背包问题与动态规划的一些心得

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立志成为软件工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值