- 博客(8)
- 收藏
- 关注
原创 气温数据爬虫(历史+预报)
本文示例程序的功能主要是获取湖北省各个地市每日最高温、最低温、风速、风向等数据。包括历史气温数据以及未来40天预报气温数据。
2023-09-12 14:47:50 1874
原创 python构建地址元素词库+双向最大匹配分词
本文示例程序的功能主要是将全量不规范地址文本进行解析,提取地址要素词构建自定义地址元素词库,该词库分别维护了停用词、地址要素级别关键字、地址要素词、同义词等;自定义地址元素词库完成初始化之后,首先基于该词库对每条地址文本进行停用词剔除、同义词替换等预处理,然后应用双向最大匹配法对地址文本进行分词,提取地址要素词,最后是对分词结果的应用,例如词云、文本匹配等。关注应用过程中遇到的问题,完善代码解决问题的同时动态维护完善自定义地址元素词库。这个项目是之前算法同事交接给我的,不过我基本算是重写了,展开来写的暂
2021-08-10 18:04:06 2605 2
原创 数据比对python自动化+tkinter操作界面配置
本文示例程序的功能是将来自两个系统的每台设备的多个相同指标进行比对,筛出不一致的项。使用python编写自动化比对程序、经过几个版本的完善优化、评估应该可以在后续稳定执行后,再通过tkinter配置图形化操作界面:选择输入文件、维护参数、指定结果输出路径,点击执行等待执行成功即可,类似一个小工具、方便交接给其他非技术背景的同事。仅做个人积累记录使用(mac OS系统,其他文章如未特意说明,则均默认windows环境),如有侵权或不合规请及时联系处理~因数据涉敏就没法放数据样式了,请自行脑补目录1
2021-07-14 12:03:05 1323
原创 Excel数据整合-python自动化
本文示例程序的功能是将定期更新的多个固定格式表格(内含多个sheet页,每个sheet页数据格式也固定)数据整合成一张结构化表格。整合前文件示例:
2021-02-23 09:49:05 924 3
原创 时序数据预测:LSTM
本文尝试应用长短期记忆(LSTM,Long Short-Term Memory)神经网络模型对月度时序数据进行预测,样本时序数据时间跨度2017年1月至今,同时对多个目标变量时序数据进行预测。本文主要参考了《python预测之美》部分章节内容,暂不做详尽的理论说明与代码解释,仅做个人积累记录使用,如有侵权或不合规请及时联系处理~目录1、样本数据获取2、数据预处理3、重构数据结构,划分训练集与测试集4、LSTM模型构建与训练5、预测结果还原6、模型效果评估1、样本数据获取本
2021-02-02 22:01:43 11383 1
原创 时序数据预测:Holt-Winters
本文尝试应用三次指数平滑法(Holt-Winters)对同时含有趋势和季节规律的月度时序数据进行预测,样本时序数据时间跨度2017年1月至今。对时序数据进行异常值判别并修正处理后,应用Holt-Winters建模预测。比较懒(主要是学识浅薄),暂不做详尽的理论说明与代码解释,仅做个人积累记录使用,如有侵权或不合规请及时联系处理~目 录1、样本数据获取2、异常值判别与修正3、模型构建与评估1、样本数据获取本例样本数据为单变量月度时序数据,读取该变量时序数据后将“年月”字段设置为索引。.
2021-02-02 20:38:43 2430
原创 时序数据预测:ARIMA
本文尝试应用ARIMA时间序列模型对具有明显季节规律的月度时序数据进行预测,样本数据来源于本人项目工作中的某地区某行业电量(已脱敏处理),外加搜集了部分外部宏观经济、气象数据,时间跨度2017年1月至今。思路:将原始时序数据进行周期分解为趋势部分+周期部分+残差部分,趋势部分应用ARIMA建模预测,周期部分取历年月均值,残差部分计算残差上界、残差下界并应用Lasso回归模型基于外部影响因素建模预测。最后对各部分结果采用不同方案进行叠加,经判断后选取最合理的方案结果作为最终预测结果。本文成果开发...
2021-02-02 19:04:20 4936 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人