洛谷OJ:P1880 [NOI1995]石子合并(DP)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Elvis_code_t/article/details/79946085

思路:首先来分析一下题目,“在一个圆形圆形操场”告诉我们石头是按环状摆放的,也就是说头尾也可以合并,这个容易解决,我们将数组扩大一倍即可。之后思考动态转移方程怎么写,合并一组石子首先要将这一组石子中的每一堆石子两两合并,那么我们很容易就可以得到动态转移方程

Problem1:dp[i][j] = min{k|dp[i][j], dp[i][k]+dp[k+1][j]+w(i, j)}

Problem2: dp[i][j] = max{k|dp[i][j], dp[i][k]+dp[k+1][j]+w(i, j)}

其中w(i,j)为第i~j堆石子之和。

因为dp[i][j]中的i需要用到比i更大的时候的状态(dp[k+1][j])所以i是从后向前推的, 而j需要用的比j更小的时候的状态(dp[i][k])所以j是从前向后推的。

分析到这里就可以完整地编写代码了

/**
 *	题目: 洛谷OJ:P1880 [NOI1995]石子合并
 *	题型: DP
 **/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <bits/stdc++.h>
using namespace std;

const int maxn = 200+10;
int dp[maxn][maxn], a[maxn], n, ans = 0x3f3f3f3f;

int w(int i, int j) {
	return a[j] - a[i-1];
}

int main()  {
	/************input**************/
	cin >> n;
	for(int i = 1; i <= n; i++)	{
		cin >> a[i];
		a[i+n] = a[i];
	}
	for(int i = 2; i <= 2*n; i++) a[i] += a[i-1];
	/*******************************/
	//Problem1
	ans = 0x3f3f3f3f;
	for(int i = 2*n; i >= 1; i--) {
		for(int j = i+1; j <= n+i+1 && j <= 2*n; j++) {
			dp[i][j] = 0x3f3f3f;
			for(int k = i; k + 1 <= j; k++) {
				dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j]+ w(i,j));
			}
		}
	}
	for(int i = 1; i <= n; i++) ans = min(ans, dp[i][i+n-1]);
	cout << ans << endl;
	//Problem2
	memset(dp, 0, sizeof(dp)); ans = 0;
	for(int i = 2*n; i >= 1; i--) {
		for(int j = i; j <= n+i-1 && j <= 2*n; j++) {
			for(int k = i; k + 1 <= j; k++) {
				dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+1][j]+ w(i,j));
			}
		}
	}
	for(int i = 1; i <= n; i++) ans = max(ans, dp[i][i+n-1]);
	cout << ans << endl;
	return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页