设每个点到1的距离为
d
i
s
[
x
]
dis[x]
dis[x],特殊边为
(
1
,
v
i
,
w
i
)
(1,v_i,w_i)
(1,vi,wi)
1、
w
i
>
d
i
s
[
v
i
]
w_i>dis[v_i]
wi>dis[vi]的特殊边可以删除
2、
w
i
=
d
i
s
[
v
i
]
且
n
u
m
[
v
i
]
>
1
w_i=dis[v_i]且num[v_i]>1
wi=dis[vi]且num[vi]>1,特殊边可以删掉
思路上的偏差:
n
u
m
[
v
i
]
=
num[v_i]=
num[vi]= 到
v
i
v_i
vi的最短路的数量
实际:
n
u
m
[
v
i
]
=
num[v_i]=
num[vi]= 从
v
i
v_i
vi出发有几条边可作为最短路的一部分
错因:
显然,删除①对是否删除②没有影响
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
typedef long long ll;
typedef pair<ll,int> pr;
const int N=1e5+5;
const int M=4e5+5;
const int inf=0x3f3f3f3f;
struct Edge{
int v,w,nxt;
}edge[M<<1];
bool vis[N];
ll dis[N];
int n,m,k,head[N],cnt;
int hd[N],ex,nxt[N],val[N],num[N],ans;
priority_queue<pr,vector<pr> ,greater<pr> > q;
void add(int u,int v,int w){
edge[++cnt].v=v;
edge[cnt].w=w;
edge[cnt].nxt=head[u];
head[u]=cnt;
}
void dijkstra(int s){
for(int i=1;i<=n;i++) dis[i]=inf;
for(int i=1;i<=n;i++) vis[i]=0;
dis[s]=0;
q.push(make_pair(0,s));
while(!q.empty()){
pr tmp=q.top();
q.pop();
int u=tmp.second;
if(vis[u]) continue;
vis[u]=1;
for(int i=hd[u];i;i=nxt[i]){
if(val[i]>dis[u]) ans++;
else if(val[i]==dis[u]&&num[u]>1){
num[u]--;
ans++;
}
}
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].v;
int w=edge[i].w;
if(dis[v]>dis[u]+1ll*w){
dis[v]=dis[u]+1ll*w;
num[v]=1;
q.push(pr(dis[v],v));
}
else if(dis[v]==dis[u]+1ll*w) num[v]++;
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&k);
int u,v,w,s,y;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
for(int i=1;i<=k;i++){
scanf("%d%d",&s,&y);
nxt[++ex]=hd[s];
val[ex]=y;
hd[s]=ex;
add(1,s,y);
add(s,1,y);
}
dijkstra(1);
printf("%d\n",ans);
return 0;
}