问题描述
试题编号: 201612-1
试题名称: 中间数
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
在一个整数序列a 1, a 2, …, a n中,如果存在某个数,大于它的整数数量等于小于它的整数数量,则称其为中间数。在一个序列中,可能存在多个下标不相同的中间数,这些中间数的值是相同的。
给定一个整数序列,请找出这个整数序列的中间数的值。
输入格式
输入的第一行包含了一个整数n,表示整数序列中数的个数。
第二行包含n个正整数,依次表示a 1, a 2, …, a n。
输出格式
如果约定序列的中间数存在,则输出中间数的值,否则输出-1表示不存在中间数。
样例输入
6
2 6 5 6 3 5
样例输出
5
样例说明
比5小的数有2个,比5大的数也有2个。
样例输入
4
3 4 6 7
样例输出
-1
样例说明
在序列中的4个数都不满足中间数的定义。
样例输入
5
3 4 6 6 7
样例输出
-1
样例说明
在序列中的5个数都不满足中间数的定义。
评测用例规模与约定
对于所有评测用例,1 ≤ n ≤ 1000,1 ≤ a i ≤ 1000。
详细代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N=1000;
int a[N];
int main(int argc, char** argv) {
int n,mid,leftcount,rightcount;
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
sort(a,a+n);
mid=n/2;
leftcount=mid;
rightcount=n-mid-1;
for(int i=mid-1;i>=0;i--){
if(a[i]==a[mid])leftcount--;
else break;
}
for(int i=mid+1;i<n;i++){
if(a[i]==a[mid])rightcount--;
else break;
}
if(leftcount==rightcount)
cout<<a[mid]<<endl;
else
cout<<-1<<endl;
return 0;
}
注意: leftcount=mid; rightcount=n-mid-1;
学习了一下sort的用法:
Sort函数有三个参数:
(1)第一个是要排序的数组的起始地址。
(2)第二个是结束的地址(最后一位要排序的地址)
(3)第三个参数是排序的方法,可以是从大到小也可是从小到大,还可以不写第三个参数,此时默认的排序方法是从小到大排序。
less<数据类型>()//从小到大排序
greater<数据类型>()//从大到小排序
例:sort(a,a+10,less());