这个题作为第三题算是比较水,但期望。。。
先Floyd一遍,求到每两个点之间的距离
然后
先考虑只有一个时间段的时候,很明显答案是0.00
在考虑有两个时间段的时候,我先假设全部都可以申请更换
有4情况:
1第一个点不改,第二个点不改 就是dist(c[i-1],c[i])
2第一个点不改,第二个点改 就是dist(c[i-1],d[i]×p[i]+dist(c[i-1],c[i])×(1-p[i])
3第一个点改,第二点不改 就是dist(d[i],c[i])×p[i-1]+dist(c[i-1],c[i])×(1-p[i-1])
4第一个点改,第二点改 就是dist(c[i-1],d[i])×(1-p[i-1])×p[i] +dist(c[i-1],c[i])×(1-p[i-1])×(1-p[i])+dist(d[i-1],c[i])×p[i-1]×(1-p[i])+dist(d[i-1],d[i])×p[i-1]×p[i]
情况已经很明显了,我们用动态规划
dp[i][j][0/1]表示对于第i个时间段,还可以用j次机会,而且第i个时间段是否已经用这次机会(0表示不换,1表示换)
1不换第i的一个时间段 有两种情况i-1换了,i-1没有换
转移方程就是dp(i,j,0)=min(dp(i-1,j,0)+dist(c[i-1],c[i]),
dp(i-1,j,1)+dist(d[i],c[i])×p[i-1]+dist(c[i-1],c[i])×(1-p[i-1]))
2换第i的一个时间段 有两种情况i-1换了,i-1没有换
转移方程就是dp(i,j,1)=min(dp(i-1,j-1,0)+dist(c[i-1],d[i]×p[i]+dist(c[i-1],c[i])×(1-p[i]),
dp(i-1,j-1,1)+dist(c[i-1],d[i])×(1-p[i-1])×p[i]+dist(c[i-1],c[i])×(1-p[i-1])×(1-p[i])+dist(d[i-1],c[i])×p[i-1]×(1-p[i])+dist(d[i-1],d[i])×p[i-1]×p[i])
不难发现一开始只有dp(0,0,0)和dp(0,1,1)为0,其他的都是INF,
在转移的时候注意j=0时不能进行第二种转移而且0<=j<=min(i,m)
浮点数的问题,一开始全部用double就行
代码
#include<iostream>
#include<cstdio>
using namespace std;
const int MAX=2100;
const int MAXN=90000;
const int INF=1<<20;
struct Edge{
int a,b;
double dist;
}l[MAXN];
//
int n,m,v,e;
int c[MAX+10],d[MAX+10];
double p[MAX+10];
double dist[MAX+10][MAX+10];
double dp[MAX+10][MAX+10][2];
//
void read(void);
void solve(void);
void floyd(void);
void Dp(void);
int main(){
read();
solve();
return 0;
}
void read(void){
cin>>n>>m>>v>>e;
for(int i=1;i<=n;i++) cin>>c[i];
for(int i=1;i<=n;i++) cin>>d[i];
for(int i=1;i<=n;i++) cin>>p[i];
for(int i=1;i<=e;i++) cin>>l[i].a>>l[i].b>>l[i].dist;
}
void floyd(void){
for(int i=1;i<=e;i++){
int a=l[i].a,b=l[i].b;
double D=l[i].dist;
dist[a][b]=min(dist[a][b],D);
dist[b][a]=dist[a][b];
}
//
for(int k=1;k<=v;k++)
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
dist[i][j]=min(dist[i][k]+dist[k][j],dist[i][j]);
}
void Dp(void){
for(int i=2;i<=n;i++)
for(int j=0;j<=m;j++){
//
dp[i][j][0]=min(dp[i][j][0],dp[i-1][j][0]+dist[c[i-1]][c[i]]);
dp[i][j][0]=min(dp[i][j][0], //0 0
dp[i-1][j][1]+dist[d[i-1]][c[i]]*p[i-1]
+dist[c[i-1]][c[i]]*(1-p[i-1]));
//
if(j>0){
dp[i][j][1]=min(dp[i][j][1],dp[i-1][j-1][0]
+dist[c[i-1]][d[i]]*p[i]+dist[c[i-1]][c[i]]*(1-p[i]));
dp[i][j][1]=min(dp[i][j][1],
dp[i-1][j-1][1]
+dist[c[i-1]][d[i]]*(1-p[i-1])*(p[i])
+dist[c[i-1]][c[i]]*(1-p[i-1])*(1-p[i])
+dist[d[i-1]][c[i]]*(p[i-1])*(1-p[i])
+dist[d[i-1]][d[i]]*p[i-1]*p[i]);
}
}
}
void solve(void){
for(int i=1;i<=v;i++) for(int j=1;j<=v;j++) dist[i][j]=INF;
for(int i=1;i<=v;i++) dist[i][i]=0;
floyd();
for(int i=1;i<=n;i++) for(int j=0;j<=m;j++) dp[i][j][0]=dp[i][j][1]=INF;
dp[1][0][0]=dp[1][1][1]=0;
Dp();
double ans=INF;
for(int i=0;i<=m;i++) ans=min(ans,min(dp[n][i][0],dp[n][i][1]));
printf("%.2lf",ans);
}