题目描述 Description
数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点可以重合)且线段价值之和最大。
n<=1000
输入描述 Input Description
第一行一个整数n,表示有多少条线段。
接下来n行每行三个整数, ai bi ci,分别代表第i条线段的左端点ai,右端点bi(保证左端点<右端点)和价值ci。
输出描述 Output Description
输出能够获得的最大价值
思路:no[i].c = no[i].c + k;其中k为第i条线段(不包括)之前的线段中满足不覆盖条件的最大值,并以此设置前i条线段(包括第i条)可得到的最大值(即前面式子中二者的和)。
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
struct node {
int a;
int b;
int c;
} no[1005];
int cmp(const node x, const node y) {
return x.b < y.b;
}
int main() {
int n;
cin >> n;
for(int i = 0; i < n; i++) {
cin >> no[i].a >> no[i].b >> no[i].c;
}
sort(no, no + n, cmp);
int maxx = 0;
for(int i = 1; i < n; i++) {
int k = 0;
for(int j = 0; j < i; j++) {
if(no[i].a >= no[j].b) {
k = max(k, no[j].c);
}
}
no[i].c = no[i].c + k;
maxx = max(maxx, no[i].c);
}
cout << maxx;
return 0;
}