[poj1028]Web Navigation题解

-为什么不是“解题报告”?
-因为这次完全没参考任何题解!


题目大意:

标准的 w e b web web浏览器靠两个栈来实现页面轮换。要求实现下列命令:
  • B A C K BACK BACK:返回后一页面,如果没有则输出“ I g n o r e d Ignored Ignored”。
  • F O R W A R D FORWARD FORWARD:返回前一页面,如果没有则输出“ I g n o r e d Ignored Ignored”。
  • V I S I T VISIT VISIT:访问新的网址,同时清空 F O R W A R D FORWARD FORWARD记录。
  • Q U I T QUIT QUIT:结束程序,关闭浏览器,啥也不用输出。
  • 对每次操作都要输出操作之后的当前页面。
初始页面为http://www.acm.org/

分析:

根据题意用两个 s t r i n g string string类型的栈来维护网页情况, s 1 s1 s1 B A C K BACK BACK s 2 s2 s2 F O R W A R D FORWARD FORWARD。初始时 s 1 s1 s1内有且仅有元素http://www.acm.org/ s 2 s2 s2为空。做法直接依照题意模拟即可。
  • 读入 B A C K BACK BACK时,弹出 s 1 s1 s1顶部元素放入 s 2 s2 s2,再输出 s 1. t o p ( ) s1.top() s1.top()。如果 s 1. s i z e ( ) s1.size() s1.size() 1 1 1(即仅剩初始页面)则不操作并输出“ I g n o r e d Ignored Ignored”。
  • 读入 F O R W A R D FORWARD FORWARD时,弹出 s 2 s2 s2顶部元素放入 s 1 s1 s1,再输出 s 1. t o p ( ) s1.top() s1.top()。如果 s 2. e m p t y ( ) s2.empty() s2.empty() 真 真 (即没有前驱页面时)则不操作并输出“ I g n o r e d Ignored Ignored”。
  • 读入 V I S I T VISIT VISIT时,清空所有前驱页面(即清空 s 2 s2 s2),再读入一个新的页面并加入 s 1 s1 s1。之后输出 s 1. t o p ( ) s1.top() s1.top()
  • 读入 Q U I T QUIT QUIT时,结束程序。

贴代码:

#pragma GCC optimize(2)
#include<stack>//C++ stl栈
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

stack<string>s1,s2;//定义string类型的两个栈
string tmp;//转移页面时的中介

int main(){
	char opt[10];//操作类型
	s1.push("http://www.acm.org/");//初始页面放入s1
	while(scanf("%s",opt)){//一直读
		if(opt[0]=='Q')break;//读到QUIT就跳出
		if(opt[0]=='V'){//如果是“VISIT”
			while(!s2.empty())s2.pop();//清空s2
			cin>>tmp;//访问新页面
			s1.push(tmp);//加入它
			cout<<s1.top()<<endl;//输出当前页面
		}else if(opt[0]=='B'){//如果是“BACK”
			if(s1.size()==1){printf("Ignored\n");continue;}//如果当前在初始页面(没有历史页面了)就忽略掉
			else{
				tmp=s1.top();s1.pop();
				s2.push(tmp);//否则将当前页面放入s2中,成为新的前驱页面
				cout<<s1.top()<<endl;//输出当前页面
			}
		}else if(opt[0]=='F'){//如果是“FORWARD”
			if(s2.empty()){printf("Ignored\n");continue;}//如果已经不存在前驱页面则忽略
			else{
				tmp=s2.top();s2.pop();
				s1.push(tmp);//否则将前驱页面弄回s1来
				cout<<s1.top()<<endl;//输出当前页面
			}
		}
	}
	return 0;//完结撒花
}

F I N FIN FIN

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值