什么是大模型?它有什么作用?对我们有什么帮助?如何学习?

过去十年,从互联网到大数据,再到人工智能和大模型,技术进步推动了商业机会。大模型作为AI领域的关键,通过大数据和计算能力提升,影响着自然语言处理、图像识别、自动驾驶等众多领域,驱动数字化转型。本文概述了大模型的发展历程及其在各行业的应用,并提供了学习大模型AI的路径和资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过去十年,致富的风口经历了从互联网到大数据,再到人工智能和大模型的转变。每一步都标志着技术的进步和创新,带来了新的商业机会和财富创造方式。

  • 互联网时代(2012-2015):在这个阶段,互联网的普及和移动设备的崛起带来了巨大的商业机遇。社交媒体、电子商务、在线游戏和云计算等领域迅速发展,成为经济增长的新动力。这个时期,许多互联网公司如阿里巴巴、腾讯、Facebook和Google等迅速崛起,成为了行业的领导者。
  • 大数据时代(2015-2018):随着互联网的深入发展,大量的数据被生成和收集。大数据技术的出现使得企业和机构能够从这些数据中提取有价值的信息,用于决策支持和业务优化。大数据分析成为了企业获取竞争优势的关键,催生了许多专注于数据分析的公司和解决方案。
  • 人工智能时代(2018-2022):在这个阶段,人工智能技术取得了重大突破,特别是在深度学习和机器学习领域。人工智能开始在图像识别、自然语言处理、自动驾驶等多个领域展现其巨大的潜力。人工智能的应用成为了企业和创业公司的新焦点,吸引了大量的投资和研究。
  • 大模型时代(2022-至今):随着计算能力的提升和数据的爆炸性增长,大型AI模型(如Transformer、BERT、GPT等)开始崭露头角。这些模型具有数亿甚至数百亿个参数,能够处理和理解海量的数据,提供更加精准和复杂的预测和分析。大模型在自然语言处理、图像识别、推荐系统等多个领域展现出卓越的性能,成为了新的技术焦点和商业机会。

那么究竟什么是大模型呢?

大模型,通常指的是在人工智能领域,参数规模达到亿级甚至百亿、千亿级别的深度学习模型。这些模型通过大量的参数来捕捉数据中的复杂关系和特征,从而在各种任务中表现出色,如图像识别、语言理解、游戏玩耍等。

我们可以把大模型比作是一个非常聪明的大脑,它通过学习大量的数据(就像阅读大量的书籍),获得了丰富的知识和经验。这个聪明的大脑能够帮助我们解决各种各样的问题,比如理解我们的语言、识别图片中的物体、甚至帮助我们做出决策等。

简单来说,大模型就是人工智能领域中的“大力士”,它因为拥有强大的“肌肉”(参数)和丰富的“知识”(数据),所以能够完成很多普通模型无法完成的任务。

大家是否有一点理解了,但还是有些疑惑和不解,那请接着看,下方大模型的应用场景和案例,相信就会懂了,说不定你已经使用过它了,只是你不知道而已。

大模型的应用场景有哪些?对于我们有什么帮助?

大模型在多个领域和场景中都有具体应用,以下是一些详细的例子:

  • 自然语言处理:在搜索引擎、智能客服、机器翻译、文本生成、情感分析等方面,大模型能够更好地理解和生成自然语言。例如,搜索引擎可以通过大模型更准确地理解用户的查询意图,提供更相关的搜索结果;智能客服可以利用大模型生成更自然的对话,提供更人性化的服务;机器翻译可以利用大模型提高翻译的准确性和流畅度;文本生成可以用于自动写作、生成新闻报道等;情感分析可以用于分析用户对产品或服务的情感态度。
  • 图像和视频分析:在医疗影像诊断、面部识别、安防监控、内容审核等方面,大模型能够识别和理解图像中的复杂信息。例如,在医疗影像诊断中,大模型可以帮助医生识别病变组织,提高诊断的准确性;面部识别可以用于身份验证、安防监控等场景;内容审核可以利用大模型自动识别和过滤违规内容,保护网络安全。
  • 推荐系统:在电商、社交媒体、音乐和视频流媒体服务中,大模型能够根据用户的历史行为和偏好提供个性化的推荐。例如,电商网站可以通过大模型推荐与用户兴趣相关的商品;社交媒体平台可以根据用户的喜好推荐相关的内容和广告;音乐和视频流媒体服务可以根据用户的播放历史和喜好推荐相似的音乐和视频,提高用户体验和满意度。
  • 游戏和娱乐:在电子游戏、虚拟现实、增强现实等领域,大模型能够创造更加智能和真实的虚拟角色,提供沉浸式的用户体验。例如,电子游戏中的非玩家角色(NPC)可以利用大模型实现更真实的对话和行为,增加游戏的互动性和趣味性;虚拟现实和增强现实可以利用大模型创造更真实的虚拟环境和角色,提供沉浸式的体验。
  • 自动驾驶:在自动驾驶汽车中,大模型能够处理来自多个传感器的海量数据,进行实时的环境感知和决策,提高驾驶的安全性和效率。例如,大模型可以用于目标检测、车辆定位、路径规划等任务,帮助自动驾驶汽车更好地应对复杂的道路环境和情况。
  • 生物医疗研究:在药物发现、基因分析、疾病预测等方面,大模型能够分析大量的生物医学数据,加速新药的发现和疾病的治疗。例如,大模型可以用于分析基因序列、预测蛋白质结构,帮助科学家更好地理解疾病的机制和研发新药。
  • 金融服务:在信贷评估、风险管理、算法交易等方面,大模型能够帮助金融机构更好地评估风险、预测市场趋势,提高决策的准确性。例如,大模型可以用于分析客户的信用历史和行为数据,评估信用风险;在算法交易中,大模型可以用于分析市场数据,预测股票价格的走势,帮助制定交易策略。
  • 教育和培训:在教育领域,大模型能够提供个性化的学习体验,根据学生的学习进度和能力提供定制化的教学内容和资源。例如,大模型可以用于智能教育平台,根据学生的答题情况和反馈,提供个性化的习题和教学建议,帮助学生更好地掌握知识。

这些应用场景只是冰山一角,随着技术的进步,大模型将在更多领域发挥重要作用,为我们的生活和工作带来了许多便利和效益,推动了各行各业的数字化转型和升级。随着大模型技术的不断发展和应用,我们可以期待在未来看到更多创新的场景和应用,为我们的生活带来更多的便利和惊喜。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

【需要学习路线和学习资料的小伙伴,可以关注公众号:硬核隔壁老王 回复"大模型"即可获取】
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值