探索GLM4-ALLTools:全能AI工具箱,释放开发者潜能

GLM-4更新了什么?

老规矩,先放大纲,带大家看看GLM-4-Alltools API更新了哪些功能。如图所示,以下就是Alltools所有新增的能力。

我将其分为了四块,一站式检索,一站式智能编程,企业私域增强,多模态四个部分。

想要用上这些新的功能也十分简单,只需要在调用GLM-4 API时,选取glm-4-alltools模型,并在tools参数里加上你想要启用的工具(如web_browser),在API调用时,平台会基于你的问题以及选择的工具自动拆解问题,工具调用,一次性解决复杂的用户需求。接口详细说明大家可以到MAAS平****台自行获取。

  • https://bigmodel.cn/

可能只看这些单项的功能,大家没有太多感触,似乎各类agent都已实现。接下来小智就带大家用两个实际案例来体会一下,当API内置了如此全能的工具箱,会碰撞出什么样的火花!

一站式检索模型直接帮你搞定

GLM-4-Alltools API 为开发者内置了实时联网搜索功能,使得开发者无需复杂的意图识别和检索参数提取。

当模型识别到问题解决需要使用搜索引擎时,会主动调用内置的检索能力,提供实时且全面的搜索结果。完成搜索后,内置的网页浏览工具能够打开并浏览网页内容,基于网页内容进行更深入的分析。同时结合强大的自我规划能力,以及内置的代码沙箱绘图等工具,API能通过一次交互就完成复杂的任务处理。

示例:给我查询上海本周日的天气情况,根据天气情况和上海的著名地标,画一张高质量的城市风景海报。
  • 按以上需求,如果使用基础的大模型API,在接收到用户提问后,至少要进行COT分解,搜索引擎检索,检索页面读取,绘图API调用,并整体通过代码完成整体流程开发。

  • 但是Alltools API在接口内部已经内置了检索、网页浏览以及绘图的工具,并且接口本身具体针对复杂需求的分解能力,所以使用时,我们只需要提出问题,并在工具参数中加入web_browser以及drawing_tool,就能轻松完成以上示例。

Alltools API示例

上图示例代码已上传github,有兴趣的小伙伴可以到如下地址自取。

  • https://github.com/q2wxec/langgraph-demo/tree/master/glm4

一站式智能编程与安全沙盒体验

GLM-4-Alltools API 内置的智能编程助手(Code Interpreter)能够准确理解自然语言描述的编程需求,自动生成代码片段来解决实际问题。这对于开发者来说,无疑是一个极大的便利。

同时为了保证代码的安全性,Alltools API提供了安全代码沙盒(Sandbox),可以在其中模拟真实环境中的代码执行结果,一次性的需求可以直接通过沙箱获取最终结果,复杂需求则可确保代码在正式环境中运行时的安全性稳定性

示例:计算[5,10,20,700,99,310,978,100]的P95,P99数值,以及平均值和方差。
  • 按以上需求,如果使用基础的大模型API,在接收到用户提问后,执行代码输出提示词引导,代码输出及配套环境准备,代码执行并依据异常情况迭代输出,最终整体通过代码完成整体流程开发。

  • 但是Alltools API在接口内部已经内置了智能编程助手与安全代码沙盒,并且接口本身具体针对复杂需求的分解能力,所以使用时,我们只需要提出问题,并在工具参数中加入code_interpreter,将sandbox设置为auto,代码生成后将自动推送到线上的沙箱环境执行,并通过LLM输出最终结果。

结语

GLM-4-Alltools API 为开发者提供了一个功能强大、易于使用、安全可靠的AI工具箱,可以帮助开发者快速构建各种AI应用。相信在不久的将来,GLM-4-Alltools API 将会成为开发者不可或缺的助手,助力开发者释放潜能,创造更多可能性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值