一、2025年国内AI大模型排名
1. 通义千问(阿里巴巴)
- 核心能力:中文理解能力全球领先,逻辑推理和文本创作表现突出,支持百万级上下文窗口和多模态交互。
- 应用场景:企业级服务、电商、金融客服,日均调用量超15亿次,服务9万+企业。
- 版本情况:通义千问有多个版本迭代,如通义千问2.0等,在性能、功能和多模态能力上持续优化提升。
2. 豆包大模型(字节跳动)
- 技术亮点:月活用户近6000万,全球用户量第二,擅长图像理解和多模态融合,教育领域应用潜力显著。
- 合作生态:与500+企业合作,聚焦家庭陪伴与学习辅导场景。
- 版本情况:持续推出不同版本,在图像理解、多模态融合等方面不断升级,以更好地适应不同场景需求。
3. 文心一言4.0(百度)
- 商业化优势:调用量年增30倍,日均调用15亿次,数理科学、语言能力评测领先。
- 行业覆盖:深度整合百度知识图谱,支持医疗、教育、金融等领域。
- 版本情况:目前以4.0版本为主,之前还有文心一言3.0等版本,每个版本在知识覆盖、推理能力等方面逐步提升。
4. 讯飞星火(科大讯飞)
- 多语种突破:支持30+语言交互,APP下载量超2亿,医疗、金融行业解决方案成熟。
- 技术特色:语音识别与合成能力行业标杆,教育场景应用广泛。
- 版本情况:有讯飞星火2.0、3.0等版本,不断提升多语种交互、语音能力以及在各行业的应用效果。
5. Kimi智能助手(月之暗面)
- 长文本处理:支持20万汉字输入,A股市场热度高,适合数据分析与专业文档解读。
- 场景扩展:计划向法律、科研领域延伸。
- 版本情况:不断更新迭代版本,以增强长文本处理能力和拓展应用场景。
6. DeepSeek(深度求索)
- 编程领域标杆:开源模型生态完善,R1版本支持代码生成与调试,综合能力对标GPT - 4。
- 技术创新:动态推理优化和领域自适应技术突破,国产大模型国际化代表。
- 版本情况:目前有R1版本,后续可能会推出更多版本优化代码生成、推理等能力。
7. 智谱清言GLM - 4(清华大学)
- 交互创新:国内首个支持视频通话的千亿参数模型,提升人机交互自然性。
- 学术背景:清华团队研发,知识问答和创意写作能力均衡。
- 版本情况:基于GLM系列发展到GLM - 4版本,在参数规模、交互能力等方面有显著提升。
8. 混元大模型(腾讯)
- 视频生成:万亿参数规模,支持文本到视频生成,影视创作领域应用广泛。
- 生态整合:深度接入微信生态,提供个性化智能体服务。
- 版本情况:不断更新版本以提升视频生成质量和在微信生态中的服务能力。
9. 百川大模型(百川智能)
- 医疗领域专精:以AI医生角色解决基层医疗难题,疾病诊断辅助系统覆盖1000 + 医院。
- 开源布局:Baichuan - 7B/13B模型下载量破百万,评测榜单表现优异。
- 版本情况:有Baichuan - 7B、Baichuan - 13B等不同参数规模的版本,可满足不同应用需求。
10. 即梦AI(字节跳动)
- 视频创作工具:支持文本/图片生成1080P视频,操作简易性领先,抖音生态深度整合。
- 用户增长:2024年上线后快速普及,短视频创作者使用率达40%。
- 版本情况:持续更新版本,优化视频生成效果和操作体验。
幂简集成倾力打造了一份全面的对比表格,深度剖析了国内主流AI大模型的关键性能指标、API产品特性以及价格等核心要素。本文将聚焦于API产品表格和API接口效果两大维度展开深入分析,为您呈现直观的对比视角。
二、2025年国外AI大模型排名
1. GPT‑4o (OpenAI)
- 开发者:OpenAI
- 特性:参数规模突破10万亿,支持多模态输入(文本/图像/音频/视频),推理能力接近人类水平,在复杂逻辑和跨领域知识整合中表现突出。
- 应用场景:科研分析、跨行业决策支持、全媒体内容生成。
- 版本情况:可能存在不同微调版本,以适应不同领域的具体应用。
2. Gemini 2.0 Ultra (Google DeepMind)
- 开发者:谷歌
- 特性:原生多模态架构,支持100 + 语言实时互译,深度集成Google生态(搜索/办公套件),上下文窗口扩展至200万token。
- 应用场景:全球化企业协作、实时翻译、多模态搜索引擎优化。
- 版本情况:有Gemini 2.0 Ultra版本,可能还有轻量级或特定功能优化的版本。
3. Claude 3.5 - Sonnet (Anthropic)
- 开发者:Anthropic(谷歌投资)
- 特性:200K ~ 1M tokens上下文窗口,宪法AI架构确保合规性,医疗和法律领域表现卓越,商业化按需计费。
- 应用场景:法律文书分析、医疗诊断辅助、高安全性对话系统。
- 版本情况:有Claude 3.5 - Sonnet版本,之前还有Claude 2等版本。
4. PaLM - 3 (Google)
- 开发者:谷歌
- 特性:参数规模超万亿,专攻常识推理和数学编码,响应速度领先同类模型,支持4096 tokens上下文。
- 应用场景:教育领域自动解题、金融量化模型开发。
- 版本情况:基于PaLM系列发展到PaLM - 3版本,可能会有不同的微调版。
5. LLaMA - 3 (Meta)
- 开发者:Meta
- 特性:开源700亿参数模型,推理速度提升200%,在开源社区中性能接近GPT - 4,支持多语言优化。
- 应用场景:中小企业定制化AI解决方案、学术研究。
- 版本情况:基于LLaMA系列发展到LLaMA - 3版本,社区可能会有基于其的二次开发版本。
6. Falcon - 200B (阿联酋TII)
- 开发者:阿联酋技术创新研究所
- 特性:1800亿参数开源模型,数学推理和代码生成能力对标GPT - 4,训练成本仅为同类模型的1/3。
- 应用场景:中东多语言服务、低成本AI基础设施搭建。
- 版本情况:目前以Falcon - 200B版本为主,后续可能会有优化版本。
7. Cohere Command - R (Cohere)
- 开发者:Cohere(前谷歌团队创立)
- 特性:专注企业级生成式AI,支持52B参数规模,提供定制化数据隐私保护方案。
- 应用场景:客户服务自动化、内部文档智能管理。
- 版本情况:持续迭代版本以满足企业级不同需求。
8. MPT - 50B (MosaicML)
- 开发者:MosaicML
- 特性:开源模型,8K tokens上下文长度,训练成本行业最低,适合中小团队快速部署。
- 应用场景:初创公司MVP开发、教育机构实验平台。
- 版本情况:有MPT - 50B版本,可能会根据不同应用场景推出优化版本。
9. Nemotron - 4 (Nvidia)
- 开发者:英伟达
- 特性:集成Megatron框架,优化GPU计算效率,专为AI芯片设计,支持大规模分布式训练。
- 应用场景:超算中心、自动驾驶模型训练。
- 版本情况:不断更新以适配新的硬件和应用需求。
10. Gopher - 2 (DeepMind)
- 开发者:DeepMind
- 特性:强化学习优化版本,在游戏AI和蛋白质结构预测领域刷新记录,支持多智能体协作。
- 应用场景:生物医药研发、复杂游戏环境模拟。
- 版本情况:基于Gopher系列发展到Gopher - 2版本,可能会有针对不同领域的微调版本。
总结
本文介绍了2025年国内外AI大模型排名情况。国内有通义千问、豆包大模型等多个模型,各有核心能力与应用场景,且不断更新迭代。国外GPT‑4o、Gemini 2.0 Ultra等模型也各有特性,如多模态输入、大规模参数等。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。