2025年伊始,伴随DeepSeek的迅速走红,人们对LLM(大语言模型)的兴趣日益浓厚,不少人觉得LLM时常展现出近乎魔法般的奇妙之处。下面我们就来揭开LLM的神秘面纱。
接下来拆解LLM的基本原理——深入探究这些模型是怎样完成构建、训练与微调,最终成为我们如今所使用的AI大模型的。
一、概念准备
大模型训练涉及四个相互关联的核心技术模块,它们共同构成了从数据到智能的转化链条。
1. 预训练(Pre-training):通用知识的奠基
- 技术本质:利用海量无标注数据(如互联网文本、图像),通过无监督学习让模型捕捉通用模式。例如 GPT-3 通过 1750 亿参数预训练,掌握了人类语言的统计规律。
- 关键作用:建立模型对世界的基础认知,形成后续优化的 “知识底座”。预训练模型如同一个 “世界模型”,存储了从数据中提取的语法规则、常识知识和跨领域关联。
2. 微调(Fine-tuning):从通用到专用的适配
- 技术定义:在预训练模型基础上,使用少量标注数据针对特定任务调整参数。例如通过 LoRA 技术冻结 90% 参数,仅训练低秩矩阵实现领域适配。
- 核心逻辑:将预训练阶段的通用知识迁移到垂直领域,解决 “知识泛化” 与 “任务特异性” 的矛盾。如医疗问答模型需在预训练基础上学习医学术语和诊疗逻辑。
3. 强化学习(RL):动态自适应的引擎
- 学习范式:通过环境反馈(奖励信号)优化模型策略,无需依赖静态标注数据。典型应用如游戏 AI 通过得分反馈提升胜率。
- 创新价值:使模型能够发现人类难以察觉的数据规律,实现从 “知识复制” 到 “知识创造” 的跨越。例如 AlphaGo 通过自我对弈发现全新围棋策略。
4. 人类反馈强化学习(RLHF):对齐人类价值观的桥梁
- 技术定位:RL 的子类,引入人类偏好数据(如答案质量排序)作为奖励信号。ChatGPT 通过 RLHF 减少有害输出,提升回答的安全性和实用性。
- 核心挑战:如何将主观的人类偏好转化为可计算的奖励信号,同时避免模型利用奖励机制漏洞生成 “看似正确但实际无意义” 的内容。
二、大模型训练的步骤概述
从整体上看,训练LLM主要包括两个关键阶段:预训练(Pre-training)后训练(Post-training):微调、RL和RLHF。
上述流程整合了预训练、微调、RLHF等核心阶段,适用于自然语言处理和多模态大模型:
1. 数据准备:打造高质量燃料
- 数据收集:预训练阶段收集海量无标注数据(如 Common Crawl 的 2500 亿网页),微调阶段聚焦领域标注数据(如医疗病历文本)。
- 数据清洗:去除噪声数据(如广告、重复内容),文本数据进行分词处理(如 GPT-4 的 100277 个 token 字典),图像数据进行裁剪、标准化。
- 数据集划分:微调阶段按 8:1:1 比例划分训练集 / 验证集 / 测试集,确保模型泛化能力评估的科学性。
2. 预训练:构建基础认知系统
- 架构选择:文本领域采用 Transformer 架构(如 GPT 系列),图像领域采用 ViT(视觉 Transformer),多模态任务使用混合架构(如 CLIP)。
训练策略:
- 无监督学习:BERT 采用掩码语言建模(预测句子中缺失词汇),GPT 采用自回归生成(预测下一个 token)。
- 分布式训练:使用 Megatron-LM 等框架实现 GPU/TPU 集群协同训练,加速千亿参数模型的收敛。
3. 任务适配:微调的双重路径
监督微调(SFT):
- 数据基础:人工标注的 <提示 - 理想回答> 对,如 InstructGPT 通过 40 名标注员生成合规回答数据集。
- 技术应用:指令微调(学习遵循用户指令)、领域微调(如法律文本分类),引入特殊 token 标记交互结构(如用户输入起始符)。
参数高效微调(PEFT) :
- LoRA:通过低秩矩阵分解,将微调参数量减少 90% 以上,适用于资源受限场景。
- Adapter:在模型层间插入小型神经网络模块(参数量仅为原模型 0.1%-1%),保持原有权重不变。
4. 强化学习优化:从被动响应到主动决策
奖励模型训练 :
- 数据收集:人工对模型生成的多个回答进行排序,如给定问题 “法国首都是哪里”,标注员对 “巴黎”" 柏林 " 等回答按正确性排序。
- 模型架构:基于 Transformer 构建奖励模型,输入为 <提示 - 回答> 拼接文本,输出为标量奖励分数。
策略优化 :
- PPO 算法:结合奖励模型分数与 KL 散度惩罚(防止模型偏离预训练分布),更新模型参数。
- GRPO 算法:DeepSeek 提出的群组相对策略优化,通过响应组内比较替代绝对奖励评估,降低计算开销。
5. 评估与调优:保障模型可靠性
评估指标 :
-
客观指标:准确率(分类任务)、BLEU(文本生成流畅度)、ROUGE(摘要相关性)。
-
人工评估:针对复杂任务(如创意写作)进行主观质量打分,检测模型 “幻觉” 问题(生成虚假信息)。
-
过拟合控制:采用 Dropout 正则化、早停法(Early Stopping),避免模型在训练集上过拟合。
6. 部署与监控:从实验室到生产环境
- 模型压缩:通过量化(INT8/INT4 精度)、剪枝技术减少模型参数量,降低推理成本(如将 GPT-3 部署到边缘设备)。
- 持续学习:基于用户反馈(如日志分析)进行在线微调,实现模型能力的持续进化,如 ChatGPT 通过用户点击数据优化回答排序。
关键步骤区别与适用场景
接下来我们详细的介绍下每一个步骤的详细内容。
三、预训练(Pre-training)
1、 为什么需要预训练?
预训练是为了让模型在见到特定任务数据(比如生成文本)之前,先通过学习大量通用数据来捕获广泛有用的特征,熟悉语言的工作方式,从而提升模型在目标任务上的表现和泛化能力,而这一过程就是预训练——一个极其计算密集的任务。
预训练技术通过从大规模未标记数据中学习通用特征和先验知识,减少对标记数据的依赖,加速并优化在有限数据集上的模型训练。
2、为什么要用大量未标记的数据做预训练呢?
1)数据稀缺性: 在现实世界的应用中,收集并标注大量数据往往是一项既耗时又昂贵的任务。特别是在某些专业领域,如医学图像识别或特定领域的文本分类,标记数据的获取更是困难重重。
预训练技术使得模型能够从未标记的大规模数据中学习通用特征,从而减少对标记数据的依赖。这使得在有限的数据集上也能训练出性能良好的模型。
2)先验知识问题:在深度学习中,模型通常从随机初始化的参数开始学习。然而,对于许多任务来说,具备一些基本的先验知识或常识会更有帮助。
预训练模型通过在大规模数据集上进行训练,已经学习到了许多有用的先验知识,如语言的语法规则、视觉的底层特征等。这些先验知识为模型在新任务上的学习提供了有力的支撑。
预训练是语言模型学习的初始阶段。在预训练期间,模型会接触大量未标记的文本数据,例如书籍、文章和网站。目标是捕获文本语料库中存在的底层模式、结构和语义知识。
本阶段大模型主要学习的方式是:
无监督学习: 预训练通常是一个无监督学习过程,模型在没有明确指导或标签的情况下从未标记的文本数据中学习。
屏蔽语言建模: 模型经过训练可以预测句子中缺失或屏蔽的单词、学习上下文关系并捕获语言模式。
四、后训练(Post-Training)/ 微调(Fine-tuning):让模型更实用
基础模型是未经打磨的。为了让它更加实用、可靠、安全,需要进行后训练(Post-Training),即在更小、更专业的数据集上进行微调(Fine-tuning)。
1、 为什么需要微调?
尽管预训练模型已经在大规模数据集上学到了丰富的通用特征和先验知识,但这些特征和知识可能并不完全适用于特定的目标任务。
微调通过在新任务的少量标注数据上进一步训练预训练模型,使模型能够学习到与目标任务相关的特定特征和规律,从而更好地适应新任务。
1)模型微调可以更好地利用预训练模型的知识,加速和优化新任务的训练过程,同时减少对新数据的需求和降低训练成本。
2)减少对新数据的需求: 从头开始训练一个大型神经网络通常需要大量的数据和计算资源,而在实际应用中,我们可能只有有限的数据集。通过微调预训练模型,我们可以利用预训练模型已经学到的知识, 减少对新数据的需求,从而在小数据集上获得更好的性能。
3)降低训练成本: 由于我们只需要调整预训练模型的部分参数,而不是从头开始训练整个模型,因此可以大大减少训练时间和所需的计算资源。这使得微调成为一种高效且经济的解决方案,尤其适用于资源有限的环境。
4)由于神经网络无法像传统软件那样被显式编程,我们只能通过训练它来“编程”它,即让它学习有结构的、带标注的数据集,这些数据代表了理想的交互示例。
2、 微调的技术原理是什么?
在预训练模型的基础上,针对特定任务或数据领域,通过在新任务的小规模标注数据集上进一步训练和调整模型的部分或全部参数,使模型能够更好地适应新任务,提高在新任务上的性能。
微调发方式: 问题回答、语言生成、命名实体识别、释义识别、摘要、情绪分析、其他
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。